On physics-informed neural networks for quantum computers

被引:5
|
作者
Markidis, Stefano [1 ]
机构
[1] KTH Royal Inst Technol, Dept Comp Sci, Stockholm, Sweden
关键词
quantum physics-informed neural network; Poisson equation; quantum neural networks; continuous variable quantum computing; heterogeneous QPU CPU computing; COMPUTATION; INFORMATION;
D O I
10.3389/fams.2022.1036711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Physics-Informed Neural Networks (PINN) emerged as a powerful tool for solving scientific computing problems, ranging from the solution of Partial Differential Equations to data assimilation tasks. One of the advantages of using PINN is to leverage the usage of Machine Learning computational frameworks relying on the combined usage of CPUs and co-processors, such as accelerators, to achieve maximum performance. This work investigates the design, implementation, and performance of PINNs, using the Quantum Processing Unit (QPU) co-processor. We design a simple Quantum PINN to solve the one-dimensional Poisson problem using a Continuous Variable (CV) quantum computing framework. We discuss the impact of different optimizers, PINN residual formulation, and quantum neural network depth on the quantum PINN accuracy. We show that the optimizer exploration of the training landscape in the case of quantum PINN is not as effective as in classical PINN, and basic Stochastic Gradient Descent (SGD) optimizers outperform adaptive and high-order optimizers. Finally, we highlight the difference in methods and algorithms between quantum and classical PINNs and outline future research challenges for quantum PINN development.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [42] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    MATERIALS & DESIGN, 2023, 236
  • [43] Stiff-PDEs and Physics-Informed Neural Networks
    Prakhar Sharma
    Llion Evans
    Michelle Tindall
    Perumal Nithiarasu
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 2929 - 2958
  • [44] Self-Adaptive Physics-Informed Neural Networks
    Texas A&M University, United States
    1600,
  • [45] Temporal consistency loss for physics-informed neural networks
    Thakur, Sukirt
    Raissi, Maziar
    Mitra, Harsa
    Ardekani, Arezoo M.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [46] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [47] Adaptive task decomposition physics-informed neural networks
    Yang, Jianchuan
    Liu, Xuanqi
    Diao, Yu
    Chen, Xi
    Hu, Haikuo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [48] Physics-informed neural networks for modeling astrophysical shocks
    Moschou, S. P.
    Hicks, E.
    Parekh, R. Y.
    Mathew, D.
    Majumdar, S.
    Vlahakis, N.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [49] Physics-Informed Neural Networks with skip connections for modeling and
    Kittelsen, Jonas Ekeland
    Antonelo, Eric Aislan
    Camponogara, Eduardo
    Imsland, Lars Struen
    APPLIED SOFT COMPUTING, 2024, 158
  • [50] Scalable algorithms for physics-informed neural and graph networks
    Shukla, Khemraj
    Xu, Mengjia
    Trask, Nathaniel
    Karniadakis, George E.
    DATA-CENTRIC ENGINEERING, 2022, 3