Robust Feature Selection Using Ensemble Feature Selection Techniques

被引:0
|
作者
Saeys, Yvan [1 ,2 ]
Abeel, Thomas [1 ,2 ]
Van de Peer, Yves [1 ,2 ]
机构
[1] VIB, Dept Plant Syst Biol, Technol Pk 927, B-9052 Ghent, Belgium
[2] Univ Ghent, Dept Mol Genet, Ghent, Belgium
关键词
PROTEOMIC PATTERNS; CANCER; CLASSIFICATION; STABILITY; SERUM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robustness or stability of feature selection techniques is a, topic of recent interest, and is an important issue when selected feature subsets are subsequently analysed by domain experts to gain more insight into the problem modelled. In this work, we investigate the use of ensemble feature selection techniques, where multiple feature selection methods are combined to yield more robust results. We show that these techniques show great promise for high-dimensional domains with small sample sizes, and provide more robust feature subsets than a single feature selection technique. In addition, we also investigate the effect of ensemble feature selection techniques on classification performance, giving rise to a new model selection strategy.
引用
收藏
页码:313 / +
页数:2
相关论文
共 50 条
  • [41] Sentiment classification using hybrid feature selection and ensemble classifier
    Jain, Achin
    Jain, Vanita
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 659 - 668
  • [42] IoT information theft prediction using ensemble feature selection
    Leevy, Joffrey L.
    Hancock, John
    Khoshgoftaar, Taghi M.
    Peterson, Jared M.
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [43] IoT information theft prediction using ensemble feature selection
    Joffrey L. Leevy
    John Hancock
    Taghi M. Khoshgoftaar
    Jared M. Peterson
    Journal of Big Data, 9
  • [44] Ensemble feature selection using election methods and ranker clustering
    Drotar, Peter
    Gazda, Matej
    Vokorokos, Liberios
    INFORMATION SCIENCES, 2019, 480 : 365 - 380
  • [45] Breast Cancer Prediction using Feature Selection and Ensemble Voting
    Nguyen, Quang H.
    Do, Trang T. T.
    Wang, Yijing
    Heng, Sin Swee
    Chen, Kelly
    Ang, Wei Hao Max
    Philip, Conceicao Edwin
    Singh, Misha
    Pham, Hung N.
    Nguyen, Binh P.
    Chua, Matthew C. H.
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2019, : 250 - 254
  • [46] Optimization of Feature Selection in Mineral Prospectivity Using Ensemble Learning
    Zhang, Hong
    Xie, Miao
    Dan, Shiyao
    Li, Meilin
    Li, Yunhe
    Yang, Die
    Wang, Yuanxi
    MINERALS, 2024, 14 (10)
  • [47] Earthquake Prediction in California Using Feature Selection Techniques
    Roiz-Pagador, Joaquin
    Chacon-Maldonado, Andres
    Ruiz, Roberto
    Asencio-Cortes, Gualberto
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 728 - 738
  • [48] Breast cancer diagnosis using feature selection techniques
    Tounsi, Sabrine
    Kallel, Imen Fourati
    Kallel, Mohamed
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 433 - 437
  • [49] Improved Identification of Cytokines Using Feature Selection Techniques
    Jiang, Limin
    Liao, Zhijun
    Su, Ran
    Wei, Leyi
    LETTERS IN ORGANIC CHEMISTRY, 2017, 14 (09) : 632 - 641
  • [50] Advantages of using feature selection techniques on steganalysis schemes
    Miche, Yoan
    Bas, Patrick
    Lendasse, Amaury
    Jutten, Christian
    Simula, Olli
    COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 606 - 613