Quiescent Optical Solitons with Cubic-Quartic and Generalized Cubic-Quartic Nonlinearity

被引:3
|
作者
Arnous, Ahmed H. [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ,6 ]
Yildirim, Yakup [7 ]
Moraru, Luminita [8 ]
Moldovanu, Simona [9 ]
Moshokoa, Seithuti P. [10 ]
机构
[1] El Shorouk Acad, Higher Inst Engn, Dept Phys & Engn Math, Cairo 11837, Egypt
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[5] Dunarea de Jos Univ Galati, Cross Border Fac, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[7] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkey
[8] Dunarea de Jos Univ Galati, Fac Sci & Environm, Dept Chem Phys & Environm, 47 Domneasca St, Galati 800008, Romania
[9] Dunarea de Jos Univ Galati, Fac Automat Comp Elect Engn & Elect, Dept Comp Sci & Informat Technol, 47 Domneasca St, Galati 800008, Romania
[10] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
关键词
solitons; Kudryashov; cubic-quartic;
D O I
10.3390/electronics11223653
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The enhanced Kudryashov's approach retrieves quiescent bright, dark, and singular solitons to the governing model that is considered with cubic-quartic form of self-phase modulation. The algorithm however fails to retrieve stationary solitons when the nonlinearity is the generalized version of the cubic-quartic form. The current analysis is conducted with a direct approach without an intermediary phase-portrait analysis as in the past.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the Stability of Multicubic-Quartic and Multimixed Cubic-Quartic Mappings
    Abbasbeygi, Zohreh
    Bodaghi, Abasalt
    Gharibkhajeh, Ayoub
    FILOMAT, 2022, 36 (03) : 1031 - 1048
  • [22] Time-fractional of cubic-quartic Schrodinger and cubic-quartic resonant Schrödinger equations with parabolic law: various optical solutions
    Ahmed, Hakima Khudher
    Ismael, Hajar Farhan
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [23] Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index
    Yildirim, Yakup
    Biswas, Anjan
    Guggilla, Padmaja
    Mallawi, Fouad
    Belic, Milivoj R.
    OPTIK, 2020, 203
  • [24] Optical solitons to the coupled cubic-quartic Sasa-Satsuma equation with Kerr law nonlinearity in birefringent fibers
    Li, Zhao
    Xie, Xinyu
    Jin, Changjiang
    OPTIK, 2022, 269
  • [25] Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity
    Biswas, Anjan
    Arshed, Saima
    OPTIK, 2018, 172 : 847 - 850
  • [26] Stationary optical solitons with cubic-quartic law of refractive index and nonlinear chromatic dispersion
    Sonmezoglu, Abdullah
    Ekici, Mehmet
    Biswas, Anjan
    PHYSICS LETTERS A, 2021, 410
  • [27] Cubic-quartic optical solitons with Kudryashov's arbitrary form of nonlinear refractive index
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    Alngar, Mohamed E. M.
    Biswas, Anjan
    Khan, Salam
    Yildirim, Yakup
    Triki, Houria
    Alzahrani, Abdullah Khamis
    Belic, Milivoj R.
    OPTIK, 2021, 238
  • [28] Cubic-quartic optical solitons in fiber Bragg gratings with Kerr law of nonlinearity and dispersive reflectivity by Lie symmetry
    Alshehri, Hashim M.
    Maturi, Dalal A.
    Al-Bogami, Dalal H.
    Kumar, Sachin
    Yildirim, Yakup
    Biswas, Anjan
    OPTIK, 2022, 270
  • [29] CUBIC-QUARTIC OPTICAL SOLITONS WITH KUDRYASHOV'S LAW OF SELF-PHASE MODULATION
    Al-Ghafri, Khalil S.
    Krishnan, Edamana V.
    Biswas, Anjan
    Yildirim, Yakup
    Yildirim, Ali Saleh
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2024, 25 (02) : 2053 - 2068
  • [30] Orthogonal stability of a cubic-quartic functional equation
    Park, Choonkil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2012, 5 (01): : 28 - 36