The IRAC point response function in the warm Spitzer mission

被引:18
|
作者
Hora, Joseph L. [1 ]
Marengo, Massimo
Park, Rebecca
Wood, Denise
Hoffmann, William F.
Lowrance, Patrick J.
Carey, Sean J.
Surace, Jason A.
Krick, Jessica E.
Glaccum, William J.
Ingalls, James G.
Laine, Seppo
Fazio, Giovanni G. [1 ]
Ashby, Matthew L. N. [1 ]
Wang, Zhong [1 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, 60 Garden St MS-65, Cambridge, MA 02138 USA
关键词
Spitzer Space Telescope; IRAC; Infrared camera; point response function; point spread function; ARRAY CAMERA IRAC; SPACE-TELESCOPE;
D O I
10.1117/12.926894
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Infrared Array Camera (IRAC) is now the only science instrument in operation on the Spitzer Space Telescope. The 3.6 and 4.5 mu m channels are temperature-stabilized at similar to 28.7K, and the sensitivity of IRAC is nearly identical to what it was in the cryogenic mission. The instrument point response function (PRF) is a set of values from which one can determine the point spread function (PSF) for a source at any position in the field, and is dependent on the optical characteristics of the telescope and instrument as well as the detector sampling and pixel response. These data are necessary when performing PSF-fitting photometry of sources, for deconvolving an IRAC image, subtracting out a bright source in a field, or for estimating the flux of a source that saturates the detector. Since the telescope and instrument are operating at a higher temperature in the post-cryogenic mission, we re-derive the PRFs for IRAC from measurements obtained after the warm mission temperature set point and detector biases were finalized and compare them to the 3.6 and 4.5 mu m PRFs determined during the cryogenic mission to assess any changes.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] IRACproc:: A software suite for processing and analyzing Spitzer/IRAC data
    Schuster, Michael T.
    Marengo, Massimo
    Patten, Brian M.
    Observatory Operations: Strategies, Processes, and Systems, 2006, 6270 : 27020 - 27020
  • [42] Spitzer/IRAC search for companions to nearby, young M dwarfs
    Allen, Peter R.
    Reid, I. Neill
    ASTRONOMICAL JOURNAL, 2008, 135 (06): : 2024 - 2032
  • [43] Spitzer IRAC images and sample spectra of Cassiopeia A's explosion
    Ennis, Jessica A.
    Rudnick, Lawrence
    Reach, William T.
    Smith, J. D.
    Rho, Jeonghee
    DeLaney, Tracey
    Gomez, Haley
    Kozasa, Takashi
    ASTROPHYSICAL JOURNAL, 2006, 652 (01): : 376 - 386
  • [44] Final Calibration and Processing of Warm IRAC Data
    Carey, Sean J.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXV, 2017, 512 : 347 - 350
  • [45] REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS
    Morello, G.
    Waldmann, I. P.
    Tinetti, G.
    ASTROPHYSICAL JOURNAL, 2016, 820 (02):
  • [46] Observing with the infrared array camera (IRAC) on the Spitzer Space Telescope
    Carey, SJ
    Lacy, M
    Laine, S
    Reach, WT
    Surace, JA
    Glaccum, WJ
    Hora, JL
    Willner, SP
    Arendt, RG
    Ashby, MLN
    Allen, LE
    Barmby, P
    Bhattacharya, B
    Deutsch, LK
    Eisenhardt, PR
    Hoffmann, WF
    Huang, JS
    Lowrance, PJ
    Marengo, M
    Megeath, ST
    Nelson, BO
    Pahre, MA
    Patten, BM
    Pipher, JL
    Stauffer, JR
    Stern, D
    Wang, Z
    Wilson, G
    Fazio, GG
    OPTICAL, INFRARED, AND MILLIMETER SPACE TELESCOPES, PTS 1-3, 2004, 5487 : 211 - 222
  • [48] How Do Spitzer IRAC Fluxes Compare to HST CALSPEC?
    Bohlin, Ralph C.
    Krick, Jessica E.
    Gordon, Karl D.
    Hubeny, Ivan
    ASTRONOMICAL JOURNAL, 2022, 164 (01):
  • [49] Spitzer/IRAC Young Stellar Objects Candidates in 30 Doradus
    Bayo, A.
    Stauffer, J. R.
    Barrado y Navascues, D.
    HIGHLIGHTS OF SPANISH ASTROPHYSICS V, 2010, : 375 - 375
  • [50] Spitzer/IRAC observations of the fields of five LMC microlensing events
    Kallivayalil, Nitya
    Patten, Brian M.
    Werner, Michael W.
    Alcock, Charles
    Nguyen, Hien T.
    SPITZER SPACE TELESCOPE: NEW VIEWS OF THE COSMOS, 2006, 357 : 70 - +