Two approximate methods of a Cauchy problem for the Helmholtz equation

被引:1
|
作者
Xiong, Xiang-Tuan [1 ]
Fu, Chu-Li [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2007年 / 26卷 / 02期
基金
中国国家自然科学基金;
关键词
inverse problems; Helmholtz equation; spectral regularization; Tikhonov regularization; error estimate;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Cauchy problem for the Helmholtz equation at fixed frequency, especially we give the optimal error bound for the ill-posed problem. Within the framework of general regularization theory, we present some spectral regularization methods and a modified Tikhonov regularization method to stabilize the problem. Moreover, Holder-type stability error estimates are proved for these regularization methods. According to the regularization theory, the error estimates are order optimal. Some numerical results are reported.
引用
收藏
页码:285 / 307
页数:23
相关论文
共 50 条
  • [21] An optimal filtering method for the Cauchy problem of the Helmholtz equation
    Cheng, Hao
    Fu, Chu-Li
    Feng, Xiao-Li
    APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 958 - 964
  • [22] Modified regularization method for the Cauchy problem of the Helmholtz equation
    Qin, H. H.
    Wei, T.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (05) : 2334 - 2348
  • [23] The Fourier regularization for solving the Cauchy problem for the Helmholtz equation
    Fu, Chu-Li
    Feng, Xiao-Li
    Qian, Zhi
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2625 - 2640
  • [24] Wavelet moment method for the Cauchy problem for the Helmholtz equation
    Reginska, Teresa
    Wakulicz, Anduej
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 218 - 229
  • [25] A regularization method for the cauchy problem of the modified Helmholtz equation
    Cheng, Hao
    Zhu, Ping
    Gao, Jie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 3711 - 3719
  • [26] A regularization method for solving the Cauchy problem for the Helmholtz equation
    Feng, Xiao-Li
    Fu, Chu-Li
    Cheng, Hao
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (07) : 3301 - 3315
  • [27] An accelerated alternating procedure for the Cauchy problem for the Helmholtz equation
    Berntsson, F.
    Kozlov, V. A.
    Mpinganzima, L.
    Turesson, B. O.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (1-2) : 44 - 60
  • [28] A Regularization Method to Solve a Cauchy Problem for the Two-Dimensional Modified Helmholtz Equation
    He, Shangqin
    Feng, Xiufang
    MATHEMATICS, 2019, 7 (04):
  • [29] Cauchy Problem for Matrix Factorizations of the Helmholtz Equation in the Space Rm
    Juraev, Davron Aslonqulovich
    Cavalcanti, Marcelo Moreira
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19
  • [30] Fourier Moment Method with Regularization for the Cauchy Problem of Helmholtz Equation
    Ma Yun-yun Ma Fu-ming (School of Mathematics
    CommunicationsinMathematicalResearch, 2012, 28 (04) : 300 - 312