Two approximate methods of a Cauchy problem for the Helmholtz equation

被引:1
|
作者
Xiong, Xiang-Tuan [1 ]
Fu, Chu-Li [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2007年 / 26卷 / 02期
基金
中国国家自然科学基金;
关键词
inverse problems; Helmholtz equation; spectral regularization; Tikhonov regularization; error estimate;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Cauchy problem for the Helmholtz equation at fixed frequency, especially we give the optimal error bound for the ill-posed problem. Within the framework of general regularization theory, we present some spectral regularization methods and a modified Tikhonov regularization method to stabilize the problem. Moreover, Holder-type stability error estimates are proved for these regularization methods. According to the regularization theory, the error estimates are order optimal. Some numerical results are reported.
引用
收藏
页码:285 / 307
页数:23
相关论文
共 50 条