ON THE FINITE ELEMENT APPROXIMATION OF VARIATIONAL INEQUALITIES WITH NONCOERCIVE OPERATORS

被引:8
|
作者
Boulbrachene, Messaoud [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Muscat 123, Oman
关键词
Bensoussan-Lions algorithm; Finite elements; L; -error estimate; Subsolution; Variational inequalities; 65N30; 65N15; ERROR ESTIMATE;
D O I
10.1080/01630563.2015.1056913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce a new method to analyze the convergence of the standard finite element method for variational inequalities with noncoercive operators. We derive an optimal L error estimate by combining the Bensoussan-Lions algorithm with the concept of subsolutions.
引用
收藏
页码:1107 / 1121
页数:15
相关论文
共 50 条
  • [41] Inverse problems for multi-valued quasi variational inequalities and noncoercive variational inequalities with noisy data
    Khan, Akhtar A.
    Migorski, Stanislaw
    Sama, Miguel
    OPTIMIZATION, 2019, 68 (10) : 1897 - 1931
  • [42] Variational approach to noncoercive systems of elliptic variational inequalities via trapping region
    Carl, Siegfried
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) : 169 - 183
  • [43] On the Finite Element Approximations of Mixed Variational Inequalities of Filtration Theory
    Badriev, I. B.
    Banderov, V. V.
    Lavrentyeva, E. E.
    Pankratova, O. V.
    11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158
  • [44] Weighted error estimates for finite element solutions of variational inequalities
    Blum, H
    Suttmeier, FT
    COMPUTING, 2000, 65 (02) : 119 - 134
  • [45] Weighted Error Estimates for Finite Element Solutions of Variational Inequalities
    Heribert Blum
    Franz-Theo Suttmeier
    Computing, 2000, 65 : 119 - 134
  • [46] ERROR ESTIMATES FOR FINITE-ELEMENT SOLUTION OF VARIATIONAL INEQUALITIES
    BREZZI, F
    HAGER, WW
    RAVIART, PA
    NUMERISCHE MATHEMATIK, 1978, 31 (01) : 1 - 16
  • [47] Finite element methods for parabolic variational inequalities with a Volterra term
    Nair, P
    Pani, AK
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (1-2) : 107 - 127
  • [48] Virtual element approximation of two-dimensional parabolic variational inequalities
    Adak, D.
    Manzini, G.
    Natarajan, S.
    Computers and Mathematics with Applications, 2022, 116 : 48 - 70
  • [49] Virtual element approximation of two-dimensional parabolic variational inequalities
    Adak, D.
    Manzini, G.
    Natarajan, S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 116 : 48 - 70
  • [50] AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A VARIATIONAL MODEL OF BRITTLE FRACTURE
    Burke, Siobhan
    Ortner, Christoph
    Sueli, Endre
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) : 980 - 1012