Diagnostic checks for integer-valued autoregressive models using expected residuals

被引:10
|
作者
Park, Yousung [2 ]
Kim, Hee-Young [1 ]
机构
[1] Korea Univ, Inst Stat, Seoul 136701, South Korea
[2] Korea Univ, Dept Stat, Seoul 136701, South Korea
关键词
Integer-valued AR(p); Residuals; Probability integral transformation; Over-dispersion; Thinning parameter; TIME-SERIES MODELS; INAR(P) MODELS; DISTRIBUTIONS; COUNTS; FORECASTS;
D O I
10.1007/s00362-011-0399-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integer-valued time series models make use of thinning operators for coherency in the nature of count data. However, the thinning operators make residuals unobservable and are the main difficulty in developing diagnostic tools for autocorrelated count data. In this regard, we introduce a new residual, which takes the form of predictive distribution functions, to assess probabilistic forecasts, and this new residual is supplemented by a modified usual residuals. Under integer-valued autoregressive (INAR) models, the properties of these two residuals are investigated and used to evaluate the predictive performance and model adequacy of the INAR models. We compare our residuals with the existing residuals through simulation studies and apply our method to select an appropriate INAR model for an over-dispersed real data.
引用
收藏
页码:951 / 970
页数:20
相关论文
共 50 条
  • [31] A New Extension of Thinning-Based Integer-Valued Autoregressive Models for Count Data
    Liu, Zhengwei
    Zhu, Fukang
    ENTROPY, 2021, 23 (01) : 1 - 17
  • [32] Bootstrap for integer-valued generalized autoregressive conditional heteroscedastic models(p, q) processes
    Neumann, Michael H.
    STATISTICA NEERLANDICA, 2021, 75 (03) : 343 - 363
  • [33] Estimation and testing for the integer-valued threshold autoregressive models based on negative binomial thinning
    Wang, Xiaohong
    Wang, Dehui
    Yang, Kai
    Xu, Da
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (06) : 1622 - 1644
  • [34] The Circumstance-Driven Bivariate Integer-Valued Autoregressive Model
    Wang, Huiqiao
    Weiss, Christian H.
    ENTROPY, 2024, 26 (02)
  • [35] Random rounded integer-valued autoregressive conditional heteroskedastic process
    Liu, Tianqing
    Yuan, Xiaohui
    STATISTICAL PAPERS, 2013, 54 (03) : 645 - 683
  • [36] Parameter change test for periodic integer-valued autoregressive process
    Yu, GangHyok
    Kim, SongGuk
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (12) : 2898 - 2912
  • [37] A bivariate integer-valued bilinear autoregressive model with random coefficients
    Predrag M. Popović
    Hassan S. Bakouch
    Statistical Papers, 2020, 61 : 1819 - 1840
  • [38] Multivariate threshold integer-valued autoregressive processes with explanatory variables
    Yang, Kai
    Xu, Nuo
    Li, Han
    Zhao, Yiwei
    Dong, Xiaogang
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 142 - 166
  • [39] Two-Threshold-Variable Integer-Valued Autoregressive Model
    Zhang, Jiayue
    Zhu, Fukang
    Chen, Huaping
    MATHEMATICS, 2023, 11 (16)
  • [40] Threshold integer-valued autoregressive model with serially dependent innovation
    Kang, Yao
    Sheng, Danshu
    Yue, Jinmei
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (17) : 3826 - 3863