Proximal quasi-Newton methods for nondifferentiable convex optimization

被引:50
|
作者
Chen, XJ [1 ]
Fukushima, M
机构
[1] Shimane Univ, Dept Math & Comp Sci, Matsue, Shimane 6908504, Japan
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
nondifferentiable convex optimization; proximal point; quasi-Newton method; cutting-plane method; bundle methods;
D O I
10.1007/s101070050059
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes an implementable proximal quasi-Newton method for minimizing a nondifferentiable convex function f in R-n. The method is based on Rockafellar's proximal point algorithm and a cutting-plane technique. At each step, we use an approximate proximal point p(a)(x(k)) of x(k) to define a v(k) is an element of partial derivative(ek) f(p(a)(x(k))) with epsilon(k) less than or equal to alpha parallel to v(k)parallel to where alpha is a constant. The method monitors the reduction in the value of parallel to v(k)parallel to to identify when a line search on f should be used. The quasi-Newton step is used to reduce the value of parallel to v(k)parallel to Without the differentiability of f, the method converges globally and the rate of convergence is Q-linear. Superlinear convergence is also discussed to extend the characterization result of Dennis and More. Numerical results show the good performance of the method.
引用
收藏
页码:313 / 334
页数:22
相关论文
共 50 条
  • [21] Nonsmooth optimization via quasi-Newton methods
    Adrian S. Lewis
    Michael L. Overton
    Mathematical Programming, 2013, 141 : 135 - 163
  • [22] VARIATIONAL QUASI-NEWTON METHODS FOR UNCONSTRAINED OPTIMIZATION
    ALBAALI, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 77 (01) : 127 - 143
  • [23] Quasi-Newton methods for solving multiobjective optimization
    Qu, Shaojian
    Goh, Mark
    Chan, Felix T. S.
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 397 - 399
  • [24] Quasi-Newton methods for multiobjective optimization problems
    Vahid Morovati
    Hadi Basirzadeh
    Latif Pourkarimi
    4OR, 2018, 16 : 261 - 294
  • [25] Nonsmooth optimization via quasi-Newton methods
    Lewis, Adrian S.
    Overton, Michael L.
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 135 - 163
  • [26] A modified quasi-Newton methods for unconstrained optimization
    Hassan, Basim A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 504 - 511
  • [27] PARALLEL QUASI-NEWTON METHODS FOR UNCONSTRAINED OPTIMIZATION
    BYRD, RH
    SCHNABEL, RB
    SHULTZ, GA
    MATHEMATICAL PROGRAMMING, 1988, 42 (02) : 273 - 306
  • [28] GLOBAL CONVERGENCE OF A CLASS OF QUASI-NEWTON METHODS ON CONVEX PROBLEMS
    BYRD, RH
    NOCEDAL, J
    YUAN, YX
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) : 1171 - 1190
  • [29] Proximal Newton Methods for Convex Composite Optimization
    Patrinos, Panagiotis
    Bemporad, Alberto
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2358 - 2363
  • [30] DIAGONALIZED MULTIPLIER METHODS AND QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    TAPIA, RA
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1977, 22 (02) : 135 - 194