Automatic Optical Surface Inspection of Wind Turbine Rotor Blades using Convolutional Neural Networks

被引:26
|
作者
Denhof, Dimitri [1 ]
Staar, Benjamin [1 ]
Luetjen, Michael [1 ]
Freitag, Michael [1 ,2 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Hsch Ring 20, D-28359 Bremen, Germany
[2] Univ Bremen, Fac Prod, Engn, Bibliothekstr 1, D-28359 Bremen, Germany
关键词
Convolutional neural network; Deep learning; Optical surface Inspection; Wind turbine rotor blade; ARCHITECTURES;
D O I
10.1016/j.procir.2019.03.286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The operation of wind turbines includes the regular surface inspection of their rotor blades. This leads to considerable downtimes and expenses due to the manual inspection process. A possible solution is the automation of this process by using drones or robots. In this article, we present a key component for such an approach by automating the visual surface inspection with convolutional neural networks (CNN). We provide insights into CNN model selection based on available hardware and training data. We further show that all CNN models reach over 96 % median classification accuracy with the best model, ResNet50, reaching 97.4 %. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1166 / 1170
页数:5
相关论文
共 50 条
  • [41] A method of convolutional neural network based on frequency segmentation for monitoring the state of wind turbine blades
    Weijun Zhu
    Yunan Wu
    Zhenye Sun
    Wenzhong Shen
    Guangxing Guo
    Jianwei Lin
    Theoretical & Applied Mechanics Letters, 2023, 13 (06) : 465 - 480
  • [42] Convolutional Neural Networks using the SMOTE Algorithm and Features Fusion for Wind Turbine Fault Prediction
    Aires, Lucas Franca
    Schmidt, Julio Oliveira
    Hubner, Guilherme Ricardo
    Schaf, Frederico Menine
    Franchi, Claiton Moro
    Pinheiro, Humberto
    Gamarra, Daniel Fernando Tello
    IEEE LATIN AMERICA TRANSACTIONS, 2025, 23 (03) : 191 - 197
  • [43] Detection of Multiple Faults in a Low-Power Wind Turbine by using Convolutional Neural Networks
    Rangel-Rodriguez, Angel H.
    Huerta-Rosales, Jose R.
    Amezquita-Sanchez, Juan P.
    Granados-Lieberman, David
    Bueno-Lopez, Maximiliano
    Valtierra-Rodriguez, Martin
    2022 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2022,
  • [44] Design of a fibrous composite preform for wind turbine rotor blades
    Zangenberg, J.
    Brondsted, P.
    Koefoed, M.
    MATERIALS & DESIGN, 2014, 56 : 635 - 641
  • [45] DESIGN AND EVALUATION OF A ROOFTOP WIND TURBINE ROTOR WITH UNTWISTED BLADES
    Zafar, Sayem
    Gadalla, Mohamed
    PROCEEDINGS OF THE ASME POWER CONFERENCE, 2013, VOL 2, 2014,
  • [46] Lightning Protected Monitoring System for Wind Turbine Rotor Blades
    Frankenstein, B.
    Schubert, L.
    Schulze, E.
    Fischer, D.
    Weihnacht, B.
    Rieske, R.
    STRUCTURAL HEALTH MONITORING 2011: CONDITION-BASED MAINTENANCE AND INTELLIGENT STRUCTURES, VOL 2, 2013, : 2629 - 2636
  • [47] The influence of the number of rotor blades on the performance of orthopter wind turbine
    Firdaus, Rachmat
    Kiwata, Takahiro
    Nagao, Koji
    Kono, Takaaki
    3RD ANNUAL APPLIED SCIENCE AND ENGINEERING CONFERENCE (AASEC 2018), 2018, 197
  • [48] Designing wind turbine rotor blades to enhance energy capture in turbine arrays
    Moghadassian, Behnam
    Sharma, Anupam
    RENEWABLE ENERGY, 2020, 148 : 651 - 664
  • [49] An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades
    Imran, Raja M.
    Hussain, D. M. Akbar
    Soltani, Mohsen
    2016 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2016,
  • [50] Analytical Investigation of Diffraction at Multiple Blades of Wind Turbine Rotor
    Fickenscher, Th.
    Raza, M. B.
    2016 13TH EUROPEAN RADAR CONFERENCE (EURAD), 2016, : 5 - 8