Automatic Optical Surface Inspection of Wind Turbine Rotor Blades using Convolutional Neural Networks

被引:26
|
作者
Denhof, Dimitri [1 ]
Staar, Benjamin [1 ]
Luetjen, Michael [1 ]
Freitag, Michael [1 ,2 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Hsch Ring 20, D-28359 Bremen, Germany
[2] Univ Bremen, Fac Prod, Engn, Bibliothekstr 1, D-28359 Bremen, Germany
关键词
Convolutional neural network; Deep learning; Optical surface Inspection; Wind turbine rotor blade; ARCHITECTURES;
D O I
10.1016/j.procir.2019.03.286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The operation of wind turbines includes the regular surface inspection of their rotor blades. This leads to considerable downtimes and expenses due to the manual inspection process. A possible solution is the automation of this process by using drones or robots. In this article, we present a key component for such an approach by automating the visual surface inspection with convolutional neural networks (CNN). We provide insights into CNN model selection based on available hardware and training data. We further show that all CNN models reach over 96 % median classification accuracy with the best model, ResNet50, reaching 97.4 %. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1166 / 1170
页数:5
相关论文
共 50 条
  • [1] FPGA-Based Optical Surface Inspection of Wind Turbine Rotor Blades Using Quantized Neural Networks
    Giefer, Lino Antoni
    Staar, Benjamin
    Freitag, Michael
    ELECTRONICS, 2020, 9 (11) : 1 - 15
  • [2] Damage identification of wind turbine blades with deep convolutional neural networks
    Guo, Jihong
    Liu, Chao
    Cao, Jinfeng
    Jiang, Dongxiang
    RENEWABLE ENERGY, 2021, 174 : 122 - 133
  • [3] Automatic Discontinuity Classification of Wind-turbine Blades Using A-scan-based Convolutional Neural Network
    Choung, Jiyeon
    Lim, Sun
    Lim, Seung Hwan
    Chi, Su Chung
    Nam, Mun Ho
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2021, 9 (01) : 210 - 218
  • [4] Automatic Discontinuity Classification of Wind-turbine Blades Using A-scan-based Convolutional Neural Network
    Jiyeon Choung
    Sun Lim
    Seung Hwan Lim
    Su Chung Chi
    Mun Ho Nam
    JournalofModernPowerSystemsandCleanEnergy, 2021, 9 (01) : 210 - 218
  • [5] Defect detection in wind turbine blades applying Convolutional Neural Networks to Ultrasonic Testing
    Mendikute, Julen
    Carmona, Itsaso
    Aizpurua, Iratxe
    Bediaga, Inigo
    Castro, Ivan
    Galdos, Lander
    Lanzagorta, Jose Luis
    NDT & E INTERNATIONAL, 2025, 154
  • [6] An application of convolutional neural networks for automatic inspection
    Calderon-Martinez, Jose A.
    Carnpoy-Cervera, Pascual
    2006 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2006, : 492 - +
  • [7] LiDAR-based automated UAV inspection of wind turbine rotor blades
    Wembers, Carlos Castelar
    Pflughaupt, Jasper
    Moshagen, Ludmila
    Kurenkov, Michael
    Lewejohann, Tim
    Schildbach, Georg
    JOURNAL OF FIELD ROBOTICS, 2024, 41 (04) : 1116 - 1132
  • [8] Acoustic-based method for identifying surface damage to wind turbine blades by using a convolutional neural network
    Tsai, Tung-Chen
    Wang, Chao-Nan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [9] On-site inspection of potential defects in wind turbine rotor blades with thermography
    Doroshtnasir, Manoucher
    Worzewski, Tamara
    Krankenhagen, Rainer
    Roellig, Mathias
    WIND ENERGY, 2016, 19 (08) : 1407 - 1422
  • [10] Robot Inspection for Wind Turbine Blades
    朱盛榕
    热能动力工程, 2019, 34 (12) : 7 - 7