Sequential local least squares imputation estimating missing value of microarray data

被引:49
|
作者
Zhang, Xiaobai [1 ]
Song, Xiaofeng [1 ]
Wang, Huinan [1 ]
Zhan, Huanping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Biomed Engn, Nanjing 210016, Peoples R China
关键词
Missing value estimation; Imputation method; Least squares principle; Normalized root mean squared error (NRMSE); Microarray data;
D O I
10.1016/j.compbiomed.2008.08.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Missing values in microarray data can significantly affect subsequent analysis, thus it is important to estimate these missing values accurately. In this paper, a sequential local least squares imputation (SLLSimpute) method is proposed to solve this problem. It estimates missing values sequentially from the gene containing the fewest missing values and partially utilizes these estimated values. In addition, an automatic parameter selection algorithm, which can generate an appropriate number of neighboring genes for each target gene, is presented for parameter estimation. Experimental results confirmed that SLLSimpute method exhibited better estimation ability compared with other currently used imputation methods. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1112 / 1120
页数:9
相关论文
共 50 条
  • [41] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    BMC BIOINFORMATICS, 2007, 8 (Suppl 2)
  • [42] Robust imputation method for missing values in microarray data
    Dankyu Yoon
    Eun-Kyung Lee
    Taesung Park
    BMC Bioinformatics, 8
  • [43] A Novel Approach for Missing Value Imputation and Classification of Microarray Dataset
    Senapti, Rajashree
    Shaw, Kailash
    Mishra, Sashikala
    Mishra, Debahuti
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1067 - 1071
  • [44] A Quasi-linear Approach for Microarray Missing Value Imputation
    Cheng, Yu
    Wang, Lan
    Hu, Jinglu
    NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 233 - +
  • [45] Semi-supervised Imputation for Microarray Missing Value Estimation
    Li, Hui-Hui
    Shao, Feng-Feng
    Li, Guo-Zheng
    2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,
  • [46] Estimating Missing Value in Microarray Data Using Fuzzy Clustering and Gene Ontology
    Mohammadi, Azadeh
    Saraee, Mohammad Hossein
    2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2008, : 382 - 385
  • [47] An ensemble approach to microarray data-based gene prioritization after missing value imputation
    Hua, Dong
    Lai, Yinglei
    BIOINFORMATICS, 2007, 23 (06) : 747 - 754
  • [48] Missing value imputation strategies for metabolomics data
    Grace Armitage, Emily
    Godzien, Joanna
    Alonso-Herranz, Vanesa
    Lopez-Gonzalvez, Angeles
    Barbas, Coral
    ELECTROPHORESIS, 2015, 36 (24) : 3050 - 3060
  • [49] Missing Value Imputation: With Application to Handwriting Data
    Xu, Zhen
    Srihari, Sargur N.
    DOCUMENT RECOGNITION AND RETRIEVAL XXII, 2015, 9402
  • [50] Estimating equations under IPW imputation of missing data
    Wu H.
    Li C.C.
    Cheng C.
    International Journal of Reasoning-based Intelligent Systems, 2021, 13 (01) : 3 - 9