Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains

被引:27
|
作者
Cui, Wenqian [1 ]
Ou, Yaobin [2 ]
Ren, Dandan [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Incompressible limits; Full magnetohydrodynamic equations; Bounded domain; Ideal polytropic; MACH NUMBER LIMIT; NAVIER-STOKES EQUATIONS; GLOBAL-SOLUTIONS; VISCOSITY LIMIT; WEAK SOLUTIONS;
D O I
10.1016/j.jmaa.2015.02.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the singular limits of the non-isentropic compressible magnetohydrodynamic equations for viscous and heat-conductive ideal polytropic flows with magnetic diffusions in a three-dimensional bounded domain as the Mach number goes to zero. Provided that the initial data are well-prepared, we establish the uniform estimates with respect to the Mach number, which gives the convergence from the full compressible magnetohydrodynamic equations to isentropic incompressible magnetohydrodynamic equations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:263 / 288
页数:26
相关论文
共 50 条
  • [31] Global well-posedness of 3D incompressible inhomogeneous magnetohydrodynamic equations
    Huang, Tian
    Qian, Chenyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2906 - 2940
  • [32] Convergence of the Full Compressible Navier-Stokes-Maxwell System to the Incompressible Magnetohydrodynamic Equations in a Bounded Domain II: Global Existence Case
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 359 - 378
  • [33] Some regularity criteria for the incompressible 3D MHD equations in bounded domains
    Kim, Jae-Myoung
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [34] Some regularity criteria for the incompressible 3D MHD equations in bounded domains
    Jae-Myoung Kim
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [35] Vanishing Viscosity Limit for the 3D Incompressible Micropolar Equations in a Bounded Domain
    Yangyang Chu
    Yuelong Xiao
    Acta Mathematica Scientia, 2023, 43 : 959 - 974
  • [36] VANISHING VISCOSITY LIMIT FOR THE 3D INCOMPRESSIBLE MICROPOLAR EQUATIONS IN A BOUNDED DOMAIN
    储洋洋
    肖跃龙
    ActaMathematicaScientia, 2023, 43 (02) : 959 - 974
  • [37] Vanishing Viscosity Limit for the 3D Incompressible Micropolar Equations in a Bounded Domain
    Chu, Yangyang
    Xiao, Yuelong
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 959 - 974
  • [38] LOW MACH NUMBER LIMIT OF STRONG SOLUTIONS FOR 3-D FULL COMPRESSIBLE MHD EQUATIONS WITH DIRICHLET BOUNDARY CONDITION
    Zeng, Lan
    Ni, Guoxi
    Li, Yingying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (10): : 5503 - 5522
  • [39] A REGULARITY CRITERION FOR THE 3D FULL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH ZERO HEAT CONDUCTIVITY
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (04): : 1757 - 1766
  • [40] Global well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    ANALYSIS AND APPLICATIONS, 2018, 16 (03) : 363 - 405