Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains

被引:27
|
作者
Cui, Wenqian [1 ]
Ou, Yaobin [2 ]
Ren, Dandan [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Incompressible limits; Full magnetohydrodynamic equations; Bounded domain; Ideal polytropic; MACH NUMBER LIMIT; NAVIER-STOKES EQUATIONS; GLOBAL-SOLUTIONS; VISCOSITY LIMIT; WEAK SOLUTIONS;
D O I
10.1016/j.jmaa.2015.02.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the singular limits of the non-isentropic compressible magnetohydrodynamic equations for viscous and heat-conductive ideal polytropic flows with magnetic diffusions in a three-dimensional bounded domain as the Mach number goes to zero. Provided that the initial data are well-prepared, we establish the uniform estimates with respect to the Mach number, which gives the convergence from the full compressible magnetohydrodynamic equations to isentropic incompressible magnetohydrodynamic equations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:263 / 288
页数:26
相关论文
共 50 条