Formation scaling control using the stress matrix

被引:0
|
作者
Yang, Qingkai [1 ,4 ]
Cao, Ming [1 ]
Sun, Zhiyong [2 ,3 ]
Fang, Hao [4 ]
Chen, Jie [4 ]
机构
[1] Univ Groningen, Fac Sci & Engn, NL-9747 AG Groningen, Netherlands
[2] Australian Natl Univ, CSIRO, Data61, Canberra, ACT 2601, Australia
[3] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2601, Australia
[4] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
来源
2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2017年
基金
中国国家自然科学基金;
关键词
DISTRIBUTED FORMATION CONTROL; MULTIAGENT SYSTEMS; NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the formation scaling control problem for multi-agent systems. In the existing literature, it is known that utilizing the formation's stress matrix, the scaling of the whole formation in IRd can be achieved by only controlling d pairs of agents whose position vectors span IR d, under the assumption that each of the d pairs of agents has the exact knowledge of the formation scaling parameter. In this paper, this stringent assumption is relaxed and we require only one pair of agents share the scaling information. We design a new class of distributed control laws by employing stresses and orthogonal projections such that the agents are steered to prescribed relative positions with respect to their neighbors. We show that if the corresponding stress matrix admits a generic universally rigid framework, the equilibrium of the closed-loop system is constrained only to the translation and scaling of the given configuration among all the possible affine transformations. Simulations are provided to validate the theoretical results.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Matrix-embedded cells control osteoclast formation
    Xiong, Jinhu
    Onal, Melda
    Jilka, Robert L.
    Weinstein, Robert S.
    Manolagas, Stavros C.
    O'Brien, Charles A.
    NATURE MEDICINE, 2011, 17 (10) : 1235 - U262
  • [32] Matrix-embedded cells control osteoclast formation
    Jinhu Xiong
    Melda Onal
    Robert L Jilka
    Robert S Weinstein
    Stavros C Manolagas
    Charles A O'Brien
    Nature Medicine, 2011, 17 : 1235 - 1241
  • [33] Acceleration of response matrix method using cross-section scaling
    Yamamoto, A
    NUCLEAR SCIENCE AND ENGINEERING, 2004, 147 (02) : 176 - 184
  • [34] Control of a Direct Current Motor Using Time Scaling
    Rairan Antolines, Jose Danilo
    INGENIERIA E INVESTIGACION, 2020, 40 (03): : 38 - 46
  • [35] Control of integrating processes using dynamic matrix control
    Gupta, Y.P.
    Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 1998, 76 (A4): : 465 - 470
  • [36] Robust Microgrid Control Using Tube Scaling Approach
    Novoselnik, Branimir
    Matusko, Jadranko
    Baotic, Mato
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 767 - 772
  • [37] Control of integrating processes using dynamic matrix control
    Gupta, YP
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 1998, 76 (A4): : 465 - 470
  • [38] A Parallel Matrix Scaling Algorithm
    Amestoy, Patrick R.
    Duff, Iain S.
    Ruiz, Daniel
    Ucar, Bora
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2008, 2008, 5336 : 301 - +
  • [39] Scaling in the neutrino mass matrix
    Mohapatra, R. N.
    Rodejohann, W.
    PHYSICS LETTERS B, 2007, 644 (01) : 59 - 66
  • [40] DIAGONAL SCALING TO AN ORTHOGONAL MATRIX
    BERMAN, A
    PARLETT, BN
    PLEMMONS, RJ
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (01): : 57 - 65