SIMPLE ALGEBRAS OF GELFAND-KIRILLOV DIMENSION TWO

被引:0
|
作者
Bell, Jason P. [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
关键词
GK dimension; quadratic growth; simple rings; noetherian rings; QUADRATIC GROWTH; GRADED DOMAINS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a field. We show that a finitely generated simple Goldie k-algebra of quadratic growth is noetherian and has Krull dimension 1. Thus a simple algebra of quadratic growth is left noetherian if and only if it is right noetherian. As a special case, we see that if A is a finitely generated simple domain of quadratic growth, then A is noetherian and by a result of Stafford every right and left ideal is generated by at most two elements. We conclude by posing questions and giving examples in which we consider what happens when the hypotheses are relaxed.
引用
收藏
页码:877 / 883
页数:7
相关论文
共 50 条
  • [31] Gelfand-Kirillov dimension of multi-filtered algebras
    Torrecillas, JG
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 : 155 - 168
  • [32] PRIME AFFINE ALGEBRAS OF GELFAND-KIRILLOV DIMENSION ONE
    SMALL, LW
    WARFIELD, RB
    JOURNAL OF ALGEBRA, 1984, 91 (02) : 386 - 389
  • [33] Gelfand-Kirillov dimension of algebras with locally nilpotent derivations
    Jeffrey Bergen
    Piotr Grzeszczuk
    Israel Journal of Mathematics, 2015, 206 : 313 - 325
  • [34] GELFAND-KIRILLOV DIMENSION FOR ALGEBRAS ASSOCIATED WITH WEYL ALGEBRA
    JOSEPH, A
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1972, 17 (04): : 325 - 336
  • [35] Simple Z-graded domains of Gelfand-Kirillov dimension two
    Ferraro, Luigi
    Gaddis, Jason
    Won, Robert
    JOURNAL OF ALGEBRA, 2020, 562 : 433 - 465
  • [36] Gelfand-Kirillov dimension for rings
    Lezama, Oswaldo
    Venegas, Helbert
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 207 - 222
  • [37] A remark on Gelfand-Kirillov dimension
    Smith, SP
    Zhang, JJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) : 349 - 352
  • [38] GELFAND-KIRILLOV DIMENSION IS EXACT FOR NOETHERIAN PI-ALGEBRAS
    LENAGAN, TH
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (02): : 247 - 250
  • [39] Gelfand-Kirillov dimension of commutative subalgebras of simple infinite dimensional algebras and their quotient division algebras
    Bavula, V
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 582 : 61 - 85
  • [40] Gelfand-Kirillov dimension of some simple unitarizable modules
    Chakraborty, Partha Sarathi
    Saurabh, Bipul
    JOURNAL OF ALGEBRA, 2018, 514 : 199 - 218