Small perturbations of polynomial meshes

被引:17
|
作者
Piazzon, F. [1 ]
Vianello, M. [1 ]
机构
[1] Univ Padua, Dept Math, Padua, Italy
关键词
multivariate polynomial inequalities; (weakly) admissible meshes; Markov compacts; multivariate polynomial interpolation; ADMISSIBLE MESHES; APPROXIMATION; POINTS; INTERPOLATION; FEKETE;
D O I
10.1080/00036811.2011.649730
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the property of being a (weakly) admissible mesh for multivariate polynomials is preserved by small perturbations on real and complex Markov compacts. Applications are given to smooth transformations of polynomial meshes and to polynomial interpolation.
引用
收藏
页码:1063 / 1073
页数:11
相关论文
共 50 条
  • [21] Polynomial splines over general T-meshes
    Xin Li
    Jiansong Deng
    Falai Chen
    The Visual Computer, 2010, 26 : 277 - 286
  • [22] Non-Polynomial Galerkin Projection on Deforming Meshes
    Stanton, Matt
    Sheng, Yu
    Wicke, Martin
    Perazzi, Federico
    Yuen, Amos
    Narasimhan, Srinivasa
    Treuille, Adrien
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):
  • [23] Polynomial splines over general T-meshes
    Li, Xin
    Deng, Jiansong
    Chen, Falai
    VISUAL COMPUTER, 2010, 26 (04): : 277 - 286
  • [24] Polynomial splines over hierarchical T-meshes
    Deng, Jiansong
    Chen, Falai
    Li, Xin
    Hu, Changqi
    Tong, Weihua
    Yang, Zhouwang
    Feng, Yuyu
    GRAPHICAL MODELS, 2008, 70 (76-86) : 76 - 86
  • [25] Approximation power of polynomial splines on T-meshes
    Schumaker, Larry L.
    Wang, Lujun
    COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (08) : 599 - 612
  • [26] On Hermite interpolation with polynomial splines on T-meshes
    Schumaker, Larry L.
    Wang, Lujun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 42 - 50
  • [27] Local analysis of a polynomial system and its perturbations
    Khodi-zade, P. D.
    DIFFERENTIAL EQUATIONS, 2008, 44 (02) : 286 - 290
  • [28] Local analysis of a polynomial system and its perturbations
    P. D. Khodi-zade
    Differential Equations, 2008, 44 : 286 - 290
  • [29] RENORMALIZATION OF NON-RENORMALIZABLE POLYNOMIAL PERTURBATIONS
    JEGERLEHNER, F
    NUCLEAR PHYSICS B, 1975, 100 (01) : 21 - 60
  • [30] Polynomial perturbations of bilinear functionals and Hessenberg matrices
    Bueno, MI
    Marcellán, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) : 64 - 83