BAXTER'S RELATIONS AND SPECTRA OF QUANTUM INTEGRABLE MODELS

被引:78
|
作者
Frenkel, Edward [1 ]
Hernandez, David [2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Paris Diderot, Sorbonne Paris Cite, Inst Math Jussieu Paris Rive Gauche, CNRS,UMR 7586, Paris, France
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
CONFORMAL FIELD-THEORY; FINITE-DIMENSIONAL REPRESENTATIONS; MINIMAL AFFINIZATIONS; QUIVER VARIETIES; BETHE-ANSATZ; CHARACTERS;
D O I
10.1215/00127094-3146282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized Baxter's relations on the transfer matrices (also known as Baxter's TQ relations) are constructed and proved for an arbitrary untwisted quantum affine algebra. Moreover; we interpret them as relations in the Grothendieck ring of the category O, introduced by Hernandez and Jimbo, involving infinite-dimensional representations, which we call here "prefundamental." We define the transfer matrices associated to the prefundamental representations and prove that their eigenvalues on any finite-dimensional representation are polynomials up to a universal factor These polynomials are the analogues of the celebrated Baxter polynomials. Combining these two results, we express the spectra of the transfer matrices in the general quantum integrable systems associated to an arbitrary untwisted quantum affine algebra in terms of our generalized Baxter polynomials. This proves a conjecture postulated by Frenkel and Reshetikhin in 1998. We also obtain generalized Bethe ansatz equations for all untwisted quantum affine algebras.
引用
收藏
页码:2407 / 2460
页数:54
相关论文
共 50 条
  • [31] Density-matrix spectra for integrable models
    Peschel, I
    Kaulke, M
    Legeza, Ö
    ANNALEN DER PHYSIK, 1999, 8 (02) : 153 - 164
  • [32] SPECTRA OF QUANTUM CHAINS WITHOUT THE YANG-BAXTER EQUATION
    PESCHEL, I
    RITTENBERG, V
    SCHULTZE, U
    NUCLEAR PHYSICS B, 1994, 430 (03) : 633 - 655
  • [33] YANG-BAXTER ALGEBRAS OF MONODROMY MATRICES IN INTEGRABLE QUANTUM-FIELD THEORIES
    DEVEGA, HJ
    EICHENHERR, H
    MAILLET, JM
    NUCLEAR PHYSICS B, 1984, 240 (03) : 377 - 399
  • [34] YANG-BAXTER CHARGE ALGEBRAS IN INTEGRABLE CLASSICAL AND QUANTUM-FIELD THEORIES
    EICHENHERR, H
    DEVEGA, HJ
    MAILLET, JM
    LECTURE NOTES IN PHYSICS, 1985, 226 : 171 - 195
  • [35] QUANTUM INVERSE SCATTERING METHOD AND YANG-BAXTER RELATION FOR INTEGRABLE SPIN SYSTEMS
    SOGO, K
    WADATI, M
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (01): : 85 - 97
  • [36] A master solution of the quantum Yang-Baxter equation and classical discrete integrable equations
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (01) : 65 - 95
  • [37] ZN-BAXTER MODELS AND QUANTUM SYMMETRICAL SPACES
    FREUND, PGO
    ZABRODIN, AV
    PHYSICS LETTERS B, 1992, 284 (3-4) : 283 - 288
  • [38] LEVEL REPULSION IN INTEGRABLE AND ALMOST-INTEGRABLE QUANTUM SPIN MODELS
    HSU, TC
    DAURIAC, JCA
    PHYSICAL REVIEW B, 1993, 47 (21) : 14291 - 14296
  • [39] On the Supersymmetric Spectra of two Planar Integrable Quantum Systems
    Gonzalez Leon, M. A.
    Mateos Guilarte, J.
    Senosiain, M. J.
    de la Torre Mayado, M.
    ALGEBRAIC ASPECTS OF DARBOUX TRANSFORMATIONS, QUANTUM INTEGRABLE SYSTEMS AND SUPERSYMMETRIC QUANTUM MECHANICS, 2012, 563 : 73 - +
  • [40] Rectangular Yang-Baxter algebras and alternating A-type integrable vertex models
    Grillo, S
    Montani, H
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2005, 2 (06) : 1063 - 1080