Processing combustion synthesized Mg0.5Zr2(PO4)3 nanopowders to thin films as potential solid electrolytes

被引:6
|
作者
Liu, Saiyue [1 ]
Zhou, Chang [1 ]
Wang, You [1 ]
Yi, Eongyu [2 ]
Wang, Weimin [2 ]
Kieffer, John [2 ]
Laine, Richard M. [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
中国博士后科学基金;
关键词
Powder processing; Nanocrystalline microstructure; Ceramics; Solid electrolytes; Mg0.5Zr2(PO4)(3); LI; BATTERIES; CONDUCTIVITY; SUBSTITUTION; MECHANISM; FRAMEWORK;
D O I
10.1016/j.elecom.2020.106753
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Mg0.5Zr2(PO4)(3) is a promising electrolyte for Mg solid-state batteries. But it is difficult to achieve high-density thin films with phase purity. Here, we synthesized Mg-0.5(1+x)FexZr2-x(PO4)(3) nanopowders using liquid-feed flame spray pyrolysis and used the product to form transparent thin films via simple pressureless sintering at 1100 degrees C. The influence of Fe on the phase and microstructure were discussed and the bottlenecks during Mg2+ conduction pathway were calculated. The dense and high-purity Mg0.6Fe0.2Zr1.8(PO4)(3) exhibited an extremely low ionic area specific resistance of 1.6 k Omega cm(2) at 200 degrees C. This paper presents a method for preparing dense, high-purity solid electrolytes at modest sintering temperatures.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Characterization of Mg0.5Zr2(PO4)3 for potential use as electrolyte in solid state magnesium batteries
    Anuar, N. K.
    Adnan, S. B. R. S.
    Mohamed, N. S.
    CERAMICS INTERNATIONAL, 2014, 40 (08) : 13719 - 13727
  • [2] Processing liquid-feed flame spray pyrolysis synthesized Mg0.5Ce0.2Zr1.8(PO4)3 nanopowders to free standing thin films and pellets as potential electrolytes in all-solid-state Mg batteries
    Liang, B.
    Keshishian, V.
    Liu, S.
    Yi, E.
    Jia, D.
    Zhou, Y.
    Kieffer, J.
    Ye, B.
    Laine, R. M.
    ELECTROCHIMICA ACTA, 2018, 272 : 144 - 153
  • [3] Synthesis and structural study of phosphates K2Mg0.5Zr1.5(PO4)3, Rb2Mg0.5Zr1.5(PO4)3, and Cs2Mg0.5Zr1.5(PO4)3 with langbeinite structure
    Orlova, AI
    Orlova, VA
    Beskrovnyi, AI
    Trubach, IG
    Kurazhkovskaya, VS
    CRYSTALLOGRAPHY REPORTS, 2005, 50 (05) : 759 - 765
  • [4] Synthesis and structural study of phosphates K2Mg0.5Zr1.5(PO4)3, Rb2Mg0.5Zr1.5(PO4)3, and Cs2Mg0.5Zr1.5(PO4)3 with langbeinite structure
    A. I. Orlova
    V. A. Orlova
    A. I. Beskrovnyi
    I. G. Trubach
    V. S. Kurazhkovskaya
    Crystallography Reports, 2005, 50 : 759 - 765
  • [5] Characteristics of new Mg0.5(Zr1-xSnx)2(PO4)3 NASICON structured compound as solid electrolytes
    Mustafa, M.
    Rani, M. S. A.
    Adnan, S. B. R. S.
    Salleh, F. M.
    Mohamed, N. S.
    CERAMICS INTERNATIONAL, 2020, 46 (18) : 28145 - 28155
  • [6] Synthesis, Structure, IR-Spectroscopic Characterization, and Ionic Conductivity of Mg0.5Zr2(AsO4)x(PO4)3 − x
    V. I. Pet’kov
    A. S. Shipilov
    E. Yu. Borovikova
    A. M. Kovalskii
    I. A. Stenina
    A. B. Yaroslavtsev
    Inorganic Materials, 2018, 54 : 1021 - 1026
  • [7] First Principles Investigation of NASICON-Structured LiTi2(PO4)3 and Mg0.5Ti2(PO4)3 Solid Electrolytes
    Fami, A. M. A.
    Wahab, N. A.
    Rani, M. S. A.
    Yaakob, M. K.
    Mustaffa, N. A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (01):
  • [8] Synthesis, Structure, IR-Spectroscopic Characterization, and Ionic Conductivity of Mg0.5Zr2(AsO4) x (PO4)3-x
    Pet'kov, V., I
    Shipilov, A. S.
    Borovikova, E. Yu
    Kovalskii, A. M.
    Stenina, I. A.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2018, 54 (10) : 1021 - 1026
  • [9] 共沉淀法制备NASICON型Mg0.5Zr2(PO4)3镁离子固态电解质
    李文龙
    刘欢
    杨利青
    郭滨
    胡炜杰
    王浩静
    功能材料, 2017, 48 (01) : 1195 - 1198+1203
  • [10] Preparation of Ca0.5Zr2(PO4)3 and Ca0.45Eu0.05Zr2(PO4)3 nanopowders: structural characterization and luminescence emission study
    Alcaraz, L.
    Isasi, J.
    Diaz-Guerra, C.
    Peiteado, M.
    Caballero, A. C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (11)