A system for classification of time-series data from industrial non-destructive device

被引:1
|
作者
Perez-Benitez, J. A. [1 ]
Padovese, L. R. [2 ]
机构
[1] Inst Politecn Nacl, IPN ESIME SEPI, Lab Evaluac Nodestruct Electromagnet LENDE, Mexico City, DF, Mexico
[2] Univ Sao Paulo, Escola Politecn, Dept Engn Mecan, BR-05508900 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
MBN decorrelation; Plastic deformation; Carbon content; Non-destructive methods; NEURAL-NETWORK; ALGORITHM; SIGNALS;
D O I
10.1016/j.engappai.2012.09.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a system for classification of industrial steel pieces by means of magnetic nondestructive device. The proposed classification system presents two main stages, online system stage and off-line system stage. In online stage, the system classifies inputs and saves misclassification information in order to perform posterior analyses. In the off-line optimization stage, the topology of a Probabilistic Neural Network is optimized by a Feature Selection algorithm combined with the Probabilistic Neural Network to increase the classification rate. The proposed Feature Selection algorithm searches for the signal spectrogram by combining three basic elements: a Sequential Forward Selection algorithm, a Feature Cluster Grow algorithm with classification rate gradient analysis and a Sequential Backward Selection. Also, a trash-data recycling algorithm is proposed to obtain the optimal feedback samples selected from the misclassified ones. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:974 / 983
页数:10
相关论文
共 50 条
  • [31] A REAL-TIME CORRELATION SYSTEM FOR ULTRASONIC NON-DESTRUCTIVE TESTING
    LAM, FK
    HUI, MS
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1982, 53 (02) : 133 - 147
  • [32] Penetrant selection method for industrial non-destructive testing
    Siwiec, Dominika
    Bednarowa, Lucia
    Pacana, Andrzej
    PRZEMYSL CHEMICZNY, 2020, 99 (05): : 771 - 773
  • [33] ENVIRONMETRIC TIME-SERIES ANALYSIS - MODELING NATURAL SYSTEMS FROM EXPERIMENTAL TIME-SERIES DATA
    YOUNG, PC
    MINCHIN, PEH
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1991, 13 (03) : 190 - 201
  • [34] Innovative Non-Destructive Device for Fruit Quality Assessment
    Costa, G.
    Bonora, E.
    Fiori, G.
    Noferini, M.
    VII INTERNATIONAL SYMPOSIUM ON KIWIFRUIT, 2011, (913): : 575 - 581
  • [35] NON-DESTRUCTIVE FILM THICKNESS MEASUREMENT ON INDUSTRIAL DIAMOND
    WEGLEIN, RD
    ELECTRONICS LETTERS, 1982, 18 (23) : 1003 - 1004
  • [36] Non-Destructive Evaluation Device for Monitoring Fluid Viscosity
    Abdulkareem, Ahmed
    Erturun, Ugur
    Mossi, Karla
    SENSORS, 2020, 20 (06)
  • [37] A PORTABLE INEXPENSIVE ELECTROPOLISHING DEVICE FOR NON-DESTRUCTIVE METALLOGRAPHY
    NATARAJAN, A
    SREEKUMAR, K
    BRITISH JOURNAL OF NON-DESTRUCTIVE TESTING, 1985, 27 (03): : 149 - 152
  • [38] DATA MANAGEMENT-SYSTEM (DMS) FOR TIME-SERIES
    HELER, JJ
    TRANSACTIONS OF THE ASAE, 1979, 22 (01): : 122 - 125
  • [39] Anomaly Detection in Industrial Multivariate Time-Series Data With Neutrosophic Theory
    Liu, Peng
    Han, Qilong
    Wu, Ting
    Tao, Wenjian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13458 - 13473
  • [40] NON-DESTRUCTIVE CLASSIFICATION APPROACHES FOR EQUILIBRATED ORDINARY CHONDRITES
    Righter, K.
    Harrington, R.
    Schroeder, C.
    Morris, R. V.
    METEORITICS & PLANETARY SCIENCE, 2013, 48 : A297 - A297