Phase dilemma in density matrix functional theory

被引:36
|
作者
Pernal, K
Cioslowski, J
机构
[1] Univ Szczecin, Inst Phys, PL-70451 Szczecin, Poland
[2] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 120卷 / 13期
关键词
D O I
10.1063/1.1651059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For closed-shell systems, a particular parametrization of coefficients in a configuration interaction (CI) expansion provides a convenient formulation for the search over electronic wave functions constrained by a set of natural orbitals (NOs) and the corresponding occupation numbers that are invoked in every variational construction of the density matrix functional (DMF) V-ee(Gamma) for the electron-electron repulsion energy. It produces an explicit expression for V-ee in terms of the Coulomb and exchange integrals over NOs, and an idempotent matrix omega, diagonal elements of which equal the occupation numbers. At the same time, it reveals a very serious bottleneck affecting any rigorous approach to the DMF theory, namely the phase dilemma that stems from the necessity to carry out minimization over a large number of possible combinations of CI coefficient signs. While underscoring its lack of variational nature, a simple approximation for the phase factor products provides a strict derivation for the recently proposed Kollmar-Hess functional. (C) 2004 American Institute of Physics.
引用
收藏
页码:5987 / 5992
页数:6
相关论文
共 50 条
  • [21] Correlation energy functional in the density-matrix functional theory
    Yasuda, K
    PHYSICAL REVIEW A, 2001, 63 (03): : 1 - 11
  • [22] Correlation energy functional in the density-matrix functional theory
    Yasud, K.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03): : 325171 - 325171
  • [23] Density matrix functional theory that includes pairing correlations
    Krewald, S.
    Soubbotin, V. B.
    Tselyaev, V. I.
    Vinas, X.
    PHYSICAL REVIEW C, 2006, 74 (06):
  • [24] Density Functional Approach and Random Matrix Theory in Proteogenesis
    Yamanaka, Masanori
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (02)
  • [25] Density matrix functional theory in average and relative coordinates
    Manby, FR
    Knowles, PJ
    Lloyd, AW
    CHEMICAL PHYSICS LETTERS, 2001, 335 (5-6) : 409 - 419
  • [26] A J matrix engine for density functional theory calculations
    White, CA
    HeadGordon, M
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (07): : 2620 - 2629
  • [27] Unity of Kohn-Sham density-functional theory and reduced-density-matrix-functional theory
    Su, Neil Qiang
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [28] Density matrix functional theory of weak intermolecular interactions
    Cioslowski, J
    Pernal, K
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (12): : 4802 - 4807
  • [29] DENSITY-MATRIX AND DENSITY FUNCTIONAL THEORY WITH A GAUSSIAN WAVEPACKET BASIS
    HARRIMAN, JE
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1983, : 501 - 515
  • [30] Density functional theory calculations on matrix metalloproteinases and inhibitors
    Ferron, Mario A.
    Dimakis, Nikolaos
    Castillo, Randy
    Leal, Illiana
    Espinoza, Ricardo
    Navarro, Nestor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240