A big data-driven dynamic estimation model of relief supplies demand in urban flood disaster

被引:61
|
作者
Lin, Anqi [1 ,2 ]
Wu, Hao [1 ,2 ]
Liang, Guanghua [3 ]
Cardenas-Tristan, Abraham [4 ]
Wu, Xia [1 ,2 ]
Zhao, Chong [1 ,2 ]
Li, Dan [1 ,2 ]
机构
[1] Cent China Normal Univ, Hubei Prov Key Lab Geog Proc Anal & Simulat, 152 Luoyu Rd, Wuhan, Peoples R China
[2] Cent China Normal Univ, Coll Urban & Environm Sci, 152 Luoyu Rd, Wuhan, Peoples R China
[3] Beijing Global Safety Technol Co Ltd, F12-14,Shuangqing Plaza,Shuangqing Rd 77, Beijing, Peoples R China
[4] Autonomus Univ San Luis Potosi, Fac Engn Geomat Engn, San Luis Potosi 78290, San Luis Potosi, Mexico
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Flood disaster; Relief supplies estimation; Big data; Multilayer perceptron neural network; Dynamic population distribution; GEOGRAPHIC INFORMATION; SPATIAL-DISTRIBUTION; NEURAL-NETWORKS; CHAIN; VULNERABILITY; OPTIMIZATION; SIMULATION; EXPOSURE; SCALE; CITY;
D O I
10.1016/j.ijdrr.2020.101682
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The dynamic relief supplies estimation for urban flood disaster still remains an important and challenging topic in emergency response. Traditional relief supplies estimation mainly depends on static census data rather than dynamic spatio-temporal population distribution, which may easily lead to a serious imbalance between supply and demand for relief resources. The emergence of big data originating from web mapping service, social media, crowdsourcing system and other methods provides alternative data sources to understand the dynamic distribution of urban population, which can help accurately estimating the relief supplies demand when urban flood occurs. This paper proposes a big data-driven dynamic estimation model of relief supplies demand, which merges the dynamic population distribution from Baidu big data and Multilayer Perceptron (MLP) neural network so as to improve the accuracy and timeliness. Taking Wuhan as an example, a specific day in summer flooding period was chosen to dynamically predict three kinds of relief materials. The results indicate that the proposed model is more feasible to estimate the relief supplies because it is integrated with MLP neural network trained by national-wide historical flood disaster cases and Baidu big data. The utility of Baidu big data for flood-affected population statistics has been shown to be more comprehensive than that of the traditional demographic methods. Thorough analysis exhibits the superiority of our proposed model with respect to accuracy and dynamics. This allows our proposed model to be more widely applied in pre- and post-disaster operations activities carried out by government and humanitarian aid organizations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A calibrated data-driven approach for small area estimation using big data
    Tam, Siu-Ming
    Sharmeen, Shaila
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (02) : 125 - 145
  • [22] Data-Driven Dynamic Internal Model Control
    Chi, Ronghu
    Zhang, Huimin
    Li, Huaying
    Huang, Biao
    Hou, Zhongsheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (09) : 5347 - 5359
  • [23] Comparison of a fuzzy control and the data-driven model for flood forecasting
    Sun, Yixiang
    Tang, Deshan
    Sun, Yifei
    Cui, Qingfeng
    NATURAL HAZARDS, 2016, 82 (02) : 827 - 844
  • [24] Comparison of a fuzzy control and the data-driven model for flood forecasting
    Yixiang Sun
    Deshan Tang
    Yifei Sun
    Qingfeng Cui
    Natural Hazards, 2016, 82 : 827 - 844
  • [25] Data-driven estimation of economic indicators with search big data in discontinuous situation
    Aoki, Goshi
    Ataka, Kazuto
    Doi, Takero
    Tsubouchi, Kota
    JOURNAL OF FINANCE AND DATA SCIENCE, 2023, 9
  • [26] Statistical Data-Driven Regression Method for Urban Electricity Demand Modelling
    Voulis, Nina
    Warnier, Martijn
    Brazier, Frances M. T.
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [27] Data-driven plant-model mismatch estimation for dynamic matrix control systems
    Xu, Xiaodong
    Simkoff, Jodie M.
    Baldea, Michael
    Chiang, Leo H.
    Castillo, Ivan
    Bindlish, Rahul
    Ashcraft, Brian
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (17) : 7103 - 7129
  • [28] Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation
    Pathiraja, S.
    Moradkhani, H.
    Marshall, L.
    Sharma, A.
    Geenens, G.
    WATER RESOURCES RESEARCH, 2018, 54 (02) : 1252 - 1280
  • [29] Data-driven demand forecast for emergency medical supplies and logistics location-allocation optimization
    Luo, Zhi-Hong
    Li, Ting
    Kongzhi yu Juece/Control and Decision, 2024, 39 (09): : 3117 - 3125
  • [30] Enhancing generalizability of data-driven urban flood models by incorporating contextual information
    Cache, Tabea
    Gomez, Milton Salvador
    Beucler, Tom
    Blagojevic, Jovan
    Leitao, Joao Paulo
    Peleg, Nadav
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (24) : 5443 - 5458