Effect of liquid viscosity on the performance of a non-porous membrane contactor for CO2 capture

被引:13
|
作者
Bernhardsen, Ida M. [1 ]
Ansaloni, Luca [1 ,2 ]
Betten, Hanne K. [1 ,3 ]
Deng, Liyuan [1 ]
Knuutila, Hanna K. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Chem Engn, NO-7491 Trondheim, Norway
[2] SINTEF Ind, Sustainable Energy Technol, Oslo, Norway
[3] Jotun AS, Performance Coatings, Powder Segment, Sandepord, Norway
关键词
CO2; capture; Mass transfer coefficient; Absorbent viscosity; Non-porous membrane contactor; CARBON-DIOXIDE ABSORPTION; MASS-TRANSFER; MONOETHANOLAMINE SOLUTIONS; REACTION-KINETICS; SURFACE-TENSION; SOLUBILITY; AMINES; N2O; RESISTANCE; HYDROXIDE;
D O I
10.1016/j.seppur.2019.04.024
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The effect of liquid viscosity on the performance of a non-porous membrane contactor is important to study for a proper solvent selection and process design. In this work, the overall mass transfer coefficient for MEA- and NaOH-based solutions was studied using a string of discs contactor in the temperature range 28-64 degrees C and a thin composite membrane contactor at 40 degrees C. Also, viscosity, density and N2O solubility of the aqueous solutions were measured in the temperature range 30-70 degrees C. The solvent viscosity of MEA and NaOH solutions was artificially adjusted from 0.5 to 54.7 mPa s by addition of sugar and/or glycerol. The overall mass transfer coefficient was found to decrease with increasing amount of viscosifier and the decrease seemed to be independent of the solvent system. In the membrane contactor, the decrease in the overall mass transfer coefficient was attributed to the decreasing CO2 solubility and CO2 diffusion coefficient, but as these properties alone were not able to describe the experimental values, the reason was attributed also to the establishment of an additional resistance at the membrane/liquid interface.
引用
收藏
页码:188 / 201
页数:14
相关论文
共 50 条
  • [31] CO2 Capture and H2 Recovery Using a Hollow Fiber Membrane Contactor
    Jeong, Cheonwoo
    Pandey, Sadanand
    Lee, Dongcheol
    Park, SangHyeon
    Baik, Joon Hyun
    Kim, Joonwoo
    SEPARATIONS, 2023, 10 (07)
  • [32] CO2 capture by enzymatic bioconversion in a membrane contactor with task specific ionic liquids
    Neves, L. A.
    Afonso, C. A. M.
    Coelhoso, I. M.
    Crespo, J. G.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 557 - 558
  • [33] Effects of SO2 on CO2 capture using a hollow fiber membrane contactor
    Yang, Jie
    Yu, Xinhai
    Yan, Jinyue
    Tu, Shan-Tung
    Dahlquist, Erik
    APPLIED ENERGY, 2013, 112 : 755 - 764
  • [34] CO2 capture by modified hollow fiber membrane contactor: Numerical study on membrane structure and membrane wettability
    Abdolahi-Mansoorkhani, Hamed
    Seddighi, Sadegh
    FUEL PROCESSING TECHNOLOGY, 2020, 209 (209)
  • [35] Effects of membrane properties on CO2 recovery performance in a gas absorption membrane contactor
    Takahashi, Nobuhide
    Furuta, Yusuke
    Fukunaga, Hiroshi
    Takatsuka, Toru
    Mano, Hiroshi
    Fujioka, Yuichi
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 693 - 698
  • [36] CO2 absorption into aqueous blends of ionic liquid and amine in a membrane contactor
    Lu, Jian-Gang
    Lu, Zhen-Yu
    Chen, Yue
    Wang, Jia-Ting
    Gao, Liu
    Gao, Xiang
    Tang, Yin-Qin
    Liu, Da-Gang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 150 : 278 - 285
  • [37] Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor
    Lin, Yuqing
    Xu, Yilin
    Loh, Chun Heng
    Wang, Rong
    APPLIED SURFACE SCIENCE, 2018, 436 : 670 - 681
  • [38] Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture
    Zhang, Shuhao
    Li, Jialu
    Liu, Jia
    Jiang, Shuangshuang
    Chen, Xiaolu
    Ren, Hao
    Liu, Terence Xiaoteng
    Zou, Xiaoqin
    Zhu, Guangshan
    JOURNAL OF MEMBRANE SCIENCE, 2021, 632
  • [39] Modelling the effect of CO2 loading of aqueous potassium glycinate on CO2 absorption in a membrane contactor
    Nieminen, Harri
    Maksimov, Pavel
    Laari, Arto
    Koiranen, Tuomas
    FRONTIERS IN CHEMICAL ENGINEERING, 2022, 4
  • [40] Pushing the limits of intensified CO2 post-combustion capture by gas-liquid absorption through a membrane contactor
    Chabanon, E.
    Bounaceur, R.
    Castel, C.
    Rode, S.
    Roizard, D.
    Favre, E.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2015, 91 : 7 - 22