Computational complexity, genetic programming, and implications

被引:0
|
作者
Rylander, B [1 ]
Soule, T [1 ]
Foster, J [1 ]
机构
[1] Univ Idaho, Dept Comp Sci, IBEST, Moscow, ID 83844 USA
来源
GENETIC PROGRAMMING, PROCEEDINGS | 2001年 / 2038卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recent theory work has shown that a Genetic Program (GP) used to produce programs may have output that is bounded above by the GP itself [1]. This paper presents proofs that show that 1) a program that is the output of a GP or any inductive process has complexity that can be bounded by the Kolmogorov complexity of the originating program; 2) this result does not hold if the random number generator used in the evolution is a true random source; and 3) an optimization problem being solved with a GP will have a complexity that can be bounded below by the growth rate of the minimum length problem representation used for the implementation. These results are then used to provide guidance for GP implementation.
引用
收藏
页码:348 / 360
页数:13
相关论文
共 50 条
  • [31] Solving the Unknown Complexity Formula Problem with Genetic Programming
    Batista, Rayco
    Segredo, Eduardo
    Segura, Carlos
    Leon, Coromoto
    Rodriguez, Casiano
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I, 2013, 7902 : 232 - 240
  • [32] Genetic programming for computational pharmacokinetics in drug discovery and development
    Archetti, Francesco
    Lanzeni, Stefano
    Messina, Enza
    Vanneschi, Leonardo
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2007, 8 (04) : 413 - 432
  • [33] Saving computational effort in Genetic Programming by means of plagues
    Fernández, F
    Tomassini, M
    Vanneschi, L
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2042 - 2049
  • [34] Automated synthesis of computational circuits using genetic programming
    Koza, JR
    Bennett, FH
    John, J
    Dunlap, F
    Keane, MA
    Andre, D
    PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), 1997, : 447 - 452
  • [35] An Empirical Study on the Accuracy of Computational Effort in Genetic Programming
    Barrero, David F.
    R-Moreno, Maria D.
    Castano, Bonifacio
    Camacho, David
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1164 - 1171
  • [36] Genetic programming for computational pharmacokinetics in drug discovery and development
    Francesco Archetti
    Stefano Lanzeni
    Enza Messina
    Leonardo Vanneschi
    Genetic Programming and Evolvable Machines, 2007, 8 : 413 - 432
  • [37] Complexity, redundancy and genetic control: implications for pathology
    Morris, JA
    JOURNAL OF PATHOLOGY, 1999, 187 : 31A - 31A
  • [38] Computational complexity via programming languages: constant factors do matter
    Ben-Amram, AM
    Jones, ND
    ACTA INFORMATICA, 2000, 37 (02) : 83 - 120
  • [39] Computational complexity via programming languages: constant factors do matter
    Amir M. Ben-Amram
    Neil D. Jones
    Acta Informatica, 2000, 37 : 83 - 120
  • [40] Revisiting Semidefinite Programming Approaches to Options Pricing: Complexity and Computational Perspectives
    Henrion, Didier
    Kirschner, Felix
    De Klerk, Etienne
    Korda, Milan
    Lasserre, Jean-Bernard
    Magron, Victor
    INFORMS JOURNAL ON COMPUTING, 2023, 35 (02) : 335 - 349