Molecular packing based on a π-stacked screw via self-assembly

被引:10
|
作者
Liu, ZH [1 ]
He, C [1 ]
Duan, CY [1 ]
You, XZ [1 ]
机构
[1] Nanjing Univ, State Key Lab Coordinat Chem, Inst Coordinat Chem, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
platinum complex; pi-pi stacking; rigid molecular tweezers; supramolecular aggregate;
D O I
10.1016/S1387-7003(99)00068-4
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A new platinum(II) complex, C24H16N10S2Pt .3H2O, bis(4,5-diazafluorene-9-one thiosemicarbazato) platinum(II) trihydrate, has been synthesized. Crystals of it are trigonal, space group P3(2) with cell parameters of a = 10.696(4), c = 19.748(6) Angstrom and Z = 3. The ligands are coordinated to the platinum(II) atom by two imino nitrogen atoms N(3) and N(8), and two sulfur atoms S(1) and S(2) forming a rigid molecular tweezers maintained by intramolecular pi-pi stacking. Detailed crystal structure analyses exhibit that the one-dimensional 3(2) screw robust supramolecular aggregate was achieved by intermolecular pi-pi stacking interaction between the extensive delocalization rr-system ligands via self-assembly and the aggregates were linked by hydrogen bonding. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:279 / 282
页数:4
相关论文
共 50 条
  • [41] Molecular assembly and self-assembly: Molecular nanoscience for future technologies
    de Wild, M
    Berner, S
    Suzuki, H
    Ramoino, L
    Baratoff, A
    Jung, TA
    CHIMIA, 2002, 56 (10) : 500 - 505
  • [42] Multiply reconfigurable 'plug and play' molecular logic via self-assembly
    de Silva, A. Prasanna
    Dobbin, Catherine M.
    Vancea, Thomas P.
    Wannalerse, Boontana
    CHEMICAL COMMUNICATIONS, 2009, (11) : 1386 - 1388
  • [43] Steering Self-Assembly of Amphiphilic Molecular Nanostructures via Halogen Exchange
    Kriete, Bjorn
    Bondarenko, Anna S.
    Jumde, Varsha R.
    Franken, Linda E.
    Minnaard, Adriaan J.
    Jansen, Thomas L. C.
    Knoester, Jasper
    Pshenichnikov, Maxim S.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (13): : 2895 - 2901
  • [44] Regulating self-assembly and molecular recognition via mechanical forces.
    Baneyx, G
    Krammer, A
    Craig, D
    Schulten, K
    Vogel, V
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U266 - U267
  • [45] Conducting polymer/metal oxide nanocomposite via molecular self-assembly
    Liu, YC
    Wu, CG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 214 : 254 - INOR
  • [46] Molecular assembly and self-assembly - Molecular nanoscience for future technologies
    De Wild, M
    Berner, S
    Suzuki, H
    Ramoino, L
    Baratoff, A
    Jung, TA
    MOLECULAR ELECTRONICS III, 2003, 1006 : 291 - 305
  • [47] Relationship Between Molecular Structure, Single crystal Packing and Self-Assembly Behavior: A Case Based on Pyrene Imide Derivatives
    Li, Xiaojun
    Zhang, Shilong
    Chen, Wangqiao
    Han, Hongjing
    Qiu, Meizhen
    Chen, Jiawen
    Zhang, Qichun
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (03)
  • [48] Machine learning prediction of self-assembly and analysis of molecular structure dependence on the critical packing parameter
    Ishiwatari, Yuuki
    Yokoyama, Takahiro
    Kojima, Tomoya
    Banno, Taisuke
    Arai, Noriyoshi
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (01) : 20 - 28
  • [49] Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts
    Briseno, Alejandro L.
    Mannsfeld, Stefan C. B.
    Shamberger, Patrick J.
    Ohuchi, Fumio S.
    Bao, Zhenan
    Jenekhe, Samson A.
    Xia, Younan
    CHEMISTRY OF MATERIALS, 2008, 20 (14) : 4712 - 4719
  • [50] Understanding Self-Assembly and Molecular Packing in Methylcellulose Aqueous Solutions Using Multiscale Modeling and Simulations
    Wu, Zijie
    Collins, Audrey M.
    Jayaraman, Arthi
    BIOMACROMOLECULES, 2024, 25 (03) : 1682 - 1695