Variable selection in linear measurement error models via penalized score functions

被引:8
|
作者
Huang, Xianzheng [1 ]
Zhang, Hongmei [2 ]
机构
[1] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
[2] Univ Memphis, Div Epidemiol Biostat & Environm Hlth, Sch Publ Hlth, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
BIC; Conditional score; Corrected score; Model error; SCAD; SEMIPARAMETRIC ESTIMATORS; ADAPTIVE LASSO; LIKELIHOOD; SHRINKAGE;
D O I
10.1016/j.jspi.2013.07.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose variable selection procedures based on penalized score functions derived for linear measurement error models. To calibrate the selection procedures, we define new tuning parameter selectors based on the scores. Large-sample properties of these new tuning parameter selectors are established for the proposed procedures. These new methods are compared in simulations and a real-data application with competing methods where one ignores measurement error or uses the Bayesian information criterion to choose the tuning parameter. Published by Elsevier B.V.
引用
收藏
页码:2101 / 2111
页数:11
相关论文
共 50 条
  • [11] Penalized Lq-likelihood estimators and variable selection in linear regression models
    Hu, Hongchang
    Zeng, Zhen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (17) : 5957 - 5970
  • [12] Double Penalized Variable Selection Procedure for Partially Linear Models with Longitudinal Data
    Zhao, Pei Xin
    Tang, An Min
    Tang, Nian Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (11) : 1963 - 1976
  • [13] Double Penalized Variable Selection Procedure for Partially Linear Models with Longitudinal Data
    Pei Xin ZHAO
    An Min TANG
    Nian Sheng TANG
    Acta Mathematica Sinica(English Series), 2014, 30 (11) : 1963 - 1976
  • [14] Double penalized variable selection procedure for partially linear models with longitudinal data
    Pei Xin Zhao
    An Min Tang
    Nian Sheng Tang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1963 - 1976
  • [15] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    Shi Yueyong
    Xu Deyi
    Cao Yongxiu
    Jiao Yuling
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (02) : 709 - 736
  • [16] Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation
    Eskandari, Farzad
    Ormoz, Ehsan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3744 - 3759
  • [17] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    SHI Yueyong
    XU Deyi
    CAO Yongxiu
    JIAO Yuling
    JournalofSystemsScience&Complexity, 2019, 32 (02) : 709 - 736
  • [18] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    Yueyong Shi
    Deyi Xu
    Yongxiu Cao
    Yuling Jiao
    Journal of Systems Science and Complexity, 2019, 32 : 709 - 736
  • [19] Variable Selection in Joint Mean and Dispersion Models via Double Penalized Likelihood
    Charalambous C.
    Pan J.
    Tranmer M.
    Sankhya B, 2014, 76 (2) : 276 - 304
  • [20] Variable Selection for Partially Linear Models With Measurement Errors
    Liang, Hua
    Li, Runze
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (485) : 234 - 248