COMMUTATIVE SCHUR RINGS OF MAXIMAL DIMENSION

被引:2
|
作者
Humphries, Stephen P. [1 ]
Johnson, Kenneth W. [2 ]
Misseldine, Andrew [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Penn State Univ, Abington Coll, Abington, PA USA
关键词
Finite group; Frobenius group; Group matrix; Metacyclic group; Random walk; S-ring; Special linear group; CYCLIC GROUPS; DETERMINANT DETERMINES; REPRESENTATIONS;
D O I
10.1080/00927872.2014.974258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A commutative Schur ring over a finite group G has dimension at most s(G) = d(1) + ... + d(r), where the di are the degrees of the irreducible characters of G. We find families of groups that have S-rings that realize this bound, including the groups SL(2, 2(n)), metacyclic groups, extraspecial groups, and groups all of whose character degrees are 1 or a fixed prime. We also give families of groups that do not realize this bound. We show that the class of groups that have S-rings that realize this bound is invariant under taking quotients. We also show how such S-rings determine a random walk on the group and how the generating function for such a random walk can be calculated using the group determinant.
引用
收藏
页码:5298 / 5327
页数:30
相关论文
共 50 条
  • [21] On the existence of maximal subrings in commutative noetherian rings
    Azarang, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (01)
  • [22] Some results on the maximal graph of commutative rings
    Soleimani, M.
    Mahmudi, F.
    Naderi, M. H.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 : 21 - 26
  • [23] Commutative rings with infinitely many maximal subrings
    Azarang, Alborz
    Oman, Greg
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)
  • [24] The maximal regular ideal of some commutative rings
    Abu Osba, Emad
    Henriksen, Melvin
    Alkam, Osama
    Smith, F. A.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (01): : 1 - 10
  • [25] Most Commutative Rings Have Maximal Subrings
    Azarang, A.
    Karainzadeh, O. A. S.
    ALGEBRA COLLOQUIUM, 2012, 19 : 1139 - 1154
  • [26] Thek-maximal hypergraph of commutative rings
    Selvakumar, K.
    Amritha, V. C.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 747 - 757
  • [27] On commutative rings whose maximal ideals are idempotent
    Kourki, Farid
    Tribak, Rachid
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (03): : 313 - 322
  • [28] The k-maximal hypergraph of commutative rings
    K. Selvakumar
    V. C. Amritha
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 747 - 757
  • [29] ON THE EXISTENCE OF MAXIMAL SUBRINGS IN COMMUTATIVE ARTINIAN RINGS
    Azarang, A.
    Karamzadeh, O. A. S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (05) : 771 - 778
  • [30] SCHUR MULTIPLIERS OF STEINBERG AND CHEVALLEY GROUPS OVER COMMUTATIVE RINGS
    KALLEN, WVD
    STEIN, MR
    MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (01) : 83 - 94