Removable Sets for Orlicz-Sobolev Spaces

被引:2
|
作者
Karak, Nijjwal [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
Removable sets; Porosity; Orlicz-Sobolev spaces;
D O I
10.1007/s11118-015-9491-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study removable sets for the Orlicz-Sobolev space W (1,I), for functions of the form . We show that (p,lambda)-porous sets lying in a hyperplane are removable and that this result is essentially sharp.
引用
收藏
页码:675 / 694
页数:20
相关论文
共 50 条
  • [41] Homogenization of obstacle problems in Orlicz-Sobolev spaces
    Marcon, Diego
    Rodrigues, Jose Francisco
    Teymurazyan, Rafayel
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 267 - 283
  • [42] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453
  • [43] Removable sets for Sobolev spaces
    Koskela, P
    ARKIV FOR MATEMATIK, 1999, 37 (02): : 291 - 304
  • [44] Nonhomogeneous boundary value problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (01) : 15 - 20
  • [45] The limiting behavior of constrained minimizers in Orlicz-Sobolev spaces
    Grey Ercole
    Viviane M. Magalhães
    Gilberto A. Pereira
    Journal d'Analyse Mathématique, 2022, 147 : 271 - 296
  • [46] An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Mustonen, V
    Tienari, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 153 - 163
  • [47] On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces
    Dong, Ge
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (03) : 333 - 356
  • [48] Uniform rotundity in every direction of Orlicz-Sobolev spaces
    Cao, Fayun
    Mao, Rui
    Wang, Bing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [49] On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces
    Ge DONG
    ChineseAnnalsofMathematics,SeriesB, 2021, (03) : 333 - 356
  • [50] Hardy and Poincare inequalities in fractional Orlicz-Sobolev spaces
    Bal, Kaushik
    Mohanta, Kaushik
    Roy, Prosenjit
    Sk, Firoj
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 216