Skeleton Based Action Recognition with Convolutional Neural Network

被引:0
|
作者
Du, Yong [1 ,3 ]
Fu, Yun [4 ]
Wang, Liang [1 ,2 ,3 ]
机构
[1] CRIPAC, Beijing, Peoples R China
[2] CEBSIT, Shanghai, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[4] Northeastern Univ, Coll Comp & Informat Sci, Coll Engn, Boston, MA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal dynamics of postures over time is crucial for sequence-based action recognition. Human actions can be represented by the corresponding motions of articulated skeleton. Most of the existing approaches for skeleton based action recognition model the spatial-temporal evolution of actions based on hand-crafted features. As a kind of hierarchically adaptive filter banks, Convolutional Neural Network (CNN) performs well in representation learning. In this paper, we propose an end-to-end hierarchical architecture for skeleton based action recognition with CNN. Firstly, we represent a skeleton sequence as a matrix by concatenating the joint coordinates in each instant and arranging those vector representations in a chronological order. Then the matrix is quantified into an image and normalized to handle the variable-length problem. The final image is fed into a CNN model for feature extraction and recognition. For the specific structure of such images, the simple max-pooling plays an important role on spatial feature selection as well as temporal frequency adjustment, which can obtain more discriminative joint information for different actions and meanwhile address the variable-frequency problem. Experimental results demonstrate that our method achieves the state-of-art performance with high computational efficiency, especially surpassing the existing result by more than 15 percentage on the challenging ChaLearn gesture recognition dataset.
引用
收藏
页码:579 / 583
页数:5
相关论文
共 50 条
  • [31] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Qilin Zhu
    Hongmin Deng
    Applied Intelligence, 2023, 53 : 17796 - 17808
  • [32] Pose Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Shijie
    Yi, Jinhui
    Abu Farha, Yazan
    Gall, Juergen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 1028 - 1035
  • [33] Skeleton-based action recognition based on spatio-temporal adaptive graph convolutional neural-network
    Cao Y.
    Liu C.
    Huang Z.
    Sheng Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (11): : 5 - 10
  • [34] Temporal Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhuang T.
    Qin Z.
    Ding Y.
    Deng F.
    Chen L.
    Qin Z.
    Raymond Choo K.-K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1586 - 1598
  • [35] Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Wang X.
    Zhong Y.
    Jin L.
    Xiao Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (03): : 306 - 312
  • [36] EchoGCN: An Echo Graph Convolutional Network for Skeleton-Based Action Recognition
    Qian, Weiwen
    Huang, Qian
    Li, Chang
    Chen, Zhongqi
    Mao, Yingchi
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), (245-261):
  • [37] Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition
    Cheng, Qin
    Cheng, Jun
    Ren, Ziliang
    Zhang, Qieshi
    Liu, Jianming
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 1303 - 1315
  • [38] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [39] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [40] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,