Integral representations and properties of Stirling numbers of the first kind

被引:30
|
作者
Qi, Feng [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
关键词
Stirling number of the first kind; Integral representation; Logarithmically convex sequence; Completely monotonic function; Majorization; Property; FUNCTION (B(X)-A(X))/X; LOGARITHMIC CONVEXITY; BERNOULLI NUMBERS; INEQUALITIES;
D O I
10.1016/j.jnt.2012.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the author establishes several integral representations and properties of Stirling numbers of the first kind. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2307 / 2319
页数:13
相关论文
共 50 条
  • [31] Multi-Lah numbers and multi-Stirling numbers of the first kind
    Dae San Kim
    Hye Kyung Kim
    Taekyun Kim
    Hyunseok Lee
    Seongho Park
    Advances in Difference Equations, 2021
  • [32] Multi-Lah numbers and multi-Stirling numbers of the first kind
    San Kim, Dae
    Kim, Hye Kyung
    Kim, Taekyun
    Lee, Hyunseok
    Park, Seongho
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [33] More asymptotic formulas for the generalized stirling numbers of the first kind
    Vega, Mary Ann Ritzell P.
    Corcino, Cristina B.
    UTILITAS MATHEMATICA, 2008, 75 : 259 - 272
  • [34] On the p-adic valuation of stirling numbers of the first kind
    Leonetti, P.
    Sanna, C.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 217 - 231
  • [35] Variations of central limit theorems and Stirling numbers of the first kind
    Heim, Bernhard
    Neuhauser, Markus
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 54 - 61
  • [36] 2-Adic valuations of Stirling numbers of the first kind
    Qiu, Min
    Hong, Shaofang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (09) : 1827 - 1855
  • [37] On the p-adic valuation of stirling numbers of the first kind
    P. Leonetti
    C. Sanna
    Acta Mathematica Hungarica, 2017, 151 : 217 - 231
  • [38] Stirling Numbers of the Second Kind
    Pak, Karol
    FORMALIZED MATHEMATICS, 2005, 13 (02): : 337 - 345
  • [39] Explicit expressions and integral representations for the Stirling numbers. A probabilistic approach
    Adell, Jose A.
    Lekuona, Alberto
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [40] Explicit expressions and integral representations for the Stirling numbers. A probabilistic approach
    José A. Adell
    Alberto Lekuona
    Advances in Difference Equations, 2019