Opinion and sentiment polarity detection using supervised machine learning

被引:0
|
作者
Touahri, Ibtissam [1 ]
Mazroui, Azzeddine [1 ]
机构
[1] Univ Mohamed First, Fac Sci, Dept Comp Sci, Oujda, Morocco
关键词
Sentiment Analysis; Opinion mining; Arabic language; Lemmatization; Supervised approach;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on Opinion Mining (OM) and Sentiment Analysis (SA) for Arabic language. As there is a lack and size limitedness at lexicon level, we aim to build a new lexical resource following different methods, manually by extracting sentimental words from a selected dataset and semiautomatically by translating an English lexicon into Arabic. We also created a lemmatized version from an existing resource. These resources were subsequently used in the development of a polarity classifier. We begin this article by explaining the construction steps of these resources. Then, we present the supervised approach we developed to determine the polarity of the new data. The results of the tests carried out show the relevance of our choices.
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条
  • [21] IoT Attacks Detection Using Supervised Machine Learning Techniques
    Aljabri, Malak
    Shaahid, Afrah
    Alnasser, Fatima
    Saleh, Asalah
    Alomari, Dorieh
    Aboulnour, Menna
    Al-Eidarous, Walla
    Althubaity, Areej
    HighTech and Innovation Journal, 2024, 5 (03): : 534 - 550
  • [22] Rumor Detection in Business Reviews Using Supervised Machine Learning
    Habib, Ammara
    Akbar, Saima
    Asghar, Muhammad Zubair
    Khattak, Asad Masood
    Ali, Rahman
    Batool, Ulfat
    2018 5TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC, AND SOCIO-CULTURAL COMPUTING (BESC), 2018, : 233 - 237
  • [23] Rumor Detection on Twitter Using a Supervised Machine Learning Framework
    Thakur, Hardeo Kumar
    Gupta, Anand
    Bhardwaj, Ayushi
    Verma, Devanshi
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2018, 8 (03) : 1 - 13
  • [24] Fall Detection with Supervised Machine Learning using Wearable Sensors
    Giuffrida, Davide
    Benetti, Guido
    De Martini, Daniele
    Facchinetti, Tullio
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 253 - 259
  • [25] Botnet Detection on TCP Traffic Using Supervised Machine Learning
    Velasco-Mata, Javier
    Fidalgo, Eduardo
    Gonzalez-Castro, Victor
    Alegre, Enrique
    Blanco-Medina, Pablo
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2019, 2019, 11734 : 444 - 455
  • [26] Insider threat detection using supervised machine learning algorithms
    Manoharan, Phavithra
    Yin, Jiao
    Wang, Hua
    Zhang, Yanchun
    Ye, Wenjie
    TELECOMMUNICATION SYSTEMS, 2024, 87 (04) : 899 - 915
  • [27] Dark Web Traffic Detection Using Supervised Machine Learning
    Nezhad, Sahra Zangeneh
    Baniasadi, Amirali
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [28] Fake news detection using supervised machine learning techniques
    Malhotra, Pooja
    Malik, Sanjay Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (01): : 7 - 15
  • [29] SMART DETECTION: USING SUPERVISED MACHINE LEARNING FOR RESPIRATORY DISEASES
    Algarni, Ali
    ADVANCES AND APPLICATIONS IN STATISTICS, 2024, 91 (12) : 1607 - 1625
  • [30] ONLINE DETECTION OF COMBUSTION INSTABILITIES USING SUPERVISED MACHINE LEARNING
    McCartney, Michael
    Indlekofer, Thomas
    Polifke, Wolfgang
    PROCEEDINGS OF THE ASME TURBO EXPO 2020: TURBOMACHINERY TECHNICAL CONFERENCE AND EXHIBITION, VOL 4A, 2020,