A Mean-field forest-fire model

被引:0
|
作者
Bressaud, Xavier [1 ]
Fournier, Nicolas [2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse, France
[2] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, CNRS UMR 7599, F-75252 Paris 05, France
关键词
Self-organized criticality; Smoluchowski's equation; Coagulation; Fragmentation; Equilibrium Asymptotic Behavior; Forest-fire model; Calton-Watson trees; Continuum random trees; Pruning; Scaling limit; STRONG FRAGMENTATION; EQUILIBRIUM; EQUATIONS; BEHAVIOR; TREND;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a family of discrete coagulation-fragmentation equations closely related to the one-dimensional forest-fire model of statistical mechanics: each pair of particles with masses i, j is an element of N merge together at rate 2 to produce a single particle with mass i + j, and each particle with mass i breaks into i particles with mass 1 at rate (i - 1)/n. The (large) parameter n controls the rate of ignition and there is also an acceleration factor (depending on the total number of particles) in front of the coagulation term. We prove that for each n is an element of N, such a model has a unique equilibrium state and study in details the asymptotics of this equilibrium as n -> infinity: (I) the distribution of the mass of a typical particle goes to the law of the number of leaves of a critical binary Galton-Watson tree, (II) the distribution of the mass of a typical size-biased particle converges, after rescaling, to a limit profile, which we write explicitly in terms of the zeroes of the Airy function and its derivative. We also indicate how to simulate perfectly a typical particle and a size-biased typical particle by pruning some random trees.
引用
收藏
页码:589 / 614
页数:26
相关论文
共 50 条