Multi range Real-time depth inference from a monocular stabilized footage using a Fully Convolutional Neural Network

被引:0
|
作者
Pinard, Clement [1 ,2 ]
Chevalley, Laure [1 ]
Manzanera, Antoine [2 ]
Filliat, David [2 ]
机构
[1] Parrot, Paris, France
[2] Univ Paris Saclay, ENSTA ParisTech, U2IS, Palaiseau, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a neural network architecture for depth map inference from monocular stabilized videos with application to UAV videos in rigid scenes. Training is based on a novel synthetic dataset for navigation that mimics aerial footage from gimbal stabilized monocular camera in rigid scenes. Based on this network, we propose a multi-range architecture for unconstrained UAV flight, leveraging flight data from sensors to make accurate depth maps for uncluttered outdoor environment. We try our algorithm on both synthetic scenes and real UAV flight data. Quantitative results are given for synthetic scenes with a slightly noisy orientation, and show that our multi-range architecture improves depth inference. Along with this article is a video that present our results more thoroughly.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] CReaM: Condensed Real-time Models for Depth Prediction using Convolutional Neural Networks
    Spek, Andrew
    Dharmasiri, Thanuja
    Drummond, Tom
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 540 - 547
  • [22] LOROD: Fully Convolutional Network for Real-time Multi-scale Object Detection Algorithm
    Hou, Shaoqi
    Li, Chao
    Liu, Xueting
    Zeng, Yuhao
    Du, Wenyi
    Yin, Guangqiang
    2021 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, INTERNET OF PEOPLE, AND SMART CITY INNOVATIONS (SMARTWORLD/SCALCOM/UIC/ATC/IOP/SCI 2021), 2021, : 579 - 584
  • [23] Real-Time, Highly Accurate Robotic Grasp Detection using Fully Convolutional Neural Network with Rotation Ensemble Module
    Park, Dongwon
    Seo, Yonghyeok
    Chun, Se Young
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9397 - 9403
  • [24] Real-time Patient Facial Expression Recognition Using Convolutional Neural Network
    Chen, Xin
    Qian, Yutong
    Fu, Shilei
    Song, Qian
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [25] Real-Time Fire Detection in Scenic Spot Using Convolutional Neural Network
    Yan, He
    Merajuddin, Shaheem Sayed
    Zhang, Miao
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2025, 29 (02) : 432 - 437
  • [26] Vision based Real-time Fish Detection Using Convolutional Neural Network
    Sung, Minsung
    Yu, Son-Cheol
    Girdhar, Yogesh
    OCEANS 2017 - ABERDEEN, 2017,
  • [27] Real-time Eye Gaze Direction Classification Using Convolutional Neural Network
    George, Anjith
    Routray, Aurobinda
    2016 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2016,
  • [28] Real-Time Facial Expression Recognition Using Deep Convolutional Neural Network
    Zeng, Yuwen
    Xiao, Nan
    Wang, Kaidi
    Yuan, Hang
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 1536 - 1541
  • [29] Real-Time Classification of Green Coffee Beans by Using a Convolutional Neural Network
    Huang, Nen-Fu
    Chou, Dong-Lin
    Lee, Chia-An
    2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION (ICISPC), 2019, : 107 - 111
  • [30] Real-Time Sign Language Fingerspelling Recognition using Convolutional Neural Network
    Oguntimilehin, Abiodun
    Balogun, Kolade
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2024, 21 (01) : 158 - 165