Fabrication of Thorny Au Nanostructures on Polyaniline Surfaces for Sensitive Surface-Enhanced Raman Spectroscopy

被引:43
|
作者
Li, Siwei [1 ]
Xu, Ping [1 ,2 ]
Ren, Ziqiu [1 ]
Zhang, Bin [1 ]
Du, Yunchen [1 ]
Han, Xijiang [1 ]
Mack, Nathan H. [2 ]
Wang, Hsing-Lin [2 ]
机构
[1] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China
[2] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
关键词
surface enhanced Raman spectroscopy; gold; polyaniline; thorny nanostructures; UNIFORM SILVER NANOWIRES; FACILE SYNTHESIS; CATALYTIC-PROPERTIES; SCATTERING SERS; NANOPARTICLES; ASSEMBLIES; ELECTRODE; NANOCRYSTALS; DEPOSITION; MOLECULES;
D O I
10.1021/am301881q
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here we demonstrate, for the first time, the fabrication of Au nanostnictures on polyaniline (PANI) membrane surfaces for surface enhanced Raman spectroscopy (SERS) applications, through a direct chemical reduction by PANI. Introduction of acids into the HAuCl4 solution leads to homogeneous Au structures on the PANI surfaces, which show only sub-ppm detection levels toward the target analyte, 4-mercaptobenzoic acid (4-MBA), because of limited surface area and lack of surface roughness. Thorny Au nanostructures can be obtained through controlled reaction conditions and the addition of a capping agent poly (vinyl pyrrolidone) (PVP) in the HAuCl4 solution and the temperature kept at 80 degrees C in an oven. Those thorny Au nanostructures, with higher surface areas and unique geometric feature, show a SEAS detection sensitivity of 1 x 10(-9) M (sub-ppb level) toward two different analyte molecules, 4-MBA and Rhodamine B, demonstrating their generality for SEAS applications. These highly sensitive SERS-active substrates offer novel robust structures for trace detection of chemical and biological analytes.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [31] Sensitive Detection of Sulfite Ions by Surface-Enhanced Raman Spectroscopy
    Gao Y.
    Wan Y.
    Liu L.
    Liu J.
    Li J.
    Pi F.
    Shipin Kexue/Food Science, 2022, 43 (20): : 328 - 335
  • [32] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [33] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [34] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718
  • [35] Surface-Enhanced Raman Spectroscopy
    Stiles, Paul. L.
    Dieringer, Jon A.
    Shah, Nilain C.
    Van Duyne, Richard R.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (601-626) : 601 - 626
  • [36] Surface-enhanced Raman spectroscopy
    Morneau, Dominique
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [37] Surface-enhanced Raman spectroscopy
    Han, Xiao Xia
    Rodriguez, Rebeca S.
    Haynes, Christy L.
    Ozaki, Yukihiro
    Zhao, Bing
    NATURE REVIEWS METHODS PRIMERS, 2022, 1 (01):
  • [38] Surface-enhanced Raman spectroscopy
    Xiao Xia Han
    Rebeca S. Rodriguez
    Christy L. Haynes
    Yukihiro Ozaki
    Bing Zhao
    Nature Reviews Methods Primers, 1
  • [39] Surface-enhanced Raman spectroscopy
    Haynes, CL
    McFarland, AD
    Van Duyne, RP
    ANALYTICAL CHEMISTRY, 2005, 77 (17) : 338A - 346A
  • [40] Engineering nanostructures for single-molecule surface-enhanced Raman spectroscopy
    Moskovits, Martin
    Jeong, Dae-Hong
    Livneh, Tsachi
    Wu, Yiying
    Stucky, Galen D.
    ISRAEL JOURNAL OF CHEMISTRY, 2006, 46 (03) : 283 - 291