A variational method for solving Fredholm integral systems

被引:2
|
作者
Kouibia, A. [1 ]
Pasadas, M. [1 ]
Rodriguez, M. L. [1 ]
机构
[1] Univ Granada, Dept Appl Math, E-18071 Granada, Spain
关键词
Integral equations; Minimization problem; Splines; 2ND KIND; WAVELET;
D O I
10.1016/j.apnum.2011.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new approach for solving second kind Fredholm integral equation system. The method is based on the minimization of a suitable functional in a certain Sobolev space. We study the convergence of the method and we present some numerical examples in order to show the validity of the proposed method. (c) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1041 / 1049
页数:9
相关论文
共 50 条
  • [21] An efficient method for solving neutrosophic Fredholm integral equations of second kind
    Moi, Sandip
    Biswas, Suvankar
    Sarkar, Smita Pal
    GRANULAR COMPUTING, 2023, 8 (01) : 1 - 22
  • [22] Monte Carlo method for solving Fredholm integral equations of the second kind
    Farnoosh, R.
    Ebrahimi, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) : 309 - 315
  • [23] Expansion Method for Solving Fuzzy Fredholm-Volterra Integral Equations
    Khezerloo, S.
    Allahviranloo, T.
    Ghasemi, S. Haji
    Salahshour, S.
    Khezerloo, M.
    Kiasary, M. Khorasan
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, PT II, 2010, 81 : 501 - +
  • [24] Monte Carlo Method for Solving the Fredholm Integral Equations of the Second Kind
    Hong ZhiMin
    Yan ZaiZai
    Chen JianRui
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2012, 41 (07): : 513 - 528
  • [25] Bernstein polynomials method for solving Volterra-Fredholm integral equations
    Hesameddini, Esmail
    Khorramizadeh, Mostafa
    Shahbazi, Mehdi
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (01): : 59 - 68
  • [26] An efficient method for solving neutrosophic Fredholm integral equations of second kind
    Sandip Moi
    Suvankar Biswas
    Smita Pal Sarkar
    Granular Computing, 2023, 8 : 1 - 22
  • [27] A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
    Momenzade, N.
    Vahidi, A. R.
    Babolian, E.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2023, 18 (01): : 145 - 164
  • [28] Rationalized Haar functions method for solving Fredholm and Volterra integral equations
    Reihani, M. H.
    Abadi, Z.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 12 - 20
  • [29] CRITERIA FOR SUITABILITY OF FREDHOLM METHOD FOR SOLVING SCATTERING INTEGRAL-EQUATIONS
    MULLIGAN, B
    IWASAKI, M
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (04): : 629 - 629
  • [30] Lagrange collocation method for solving Volterra-Fredholm integral equations
    Wang, Keyan
    Wang, Qisheng
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (21) : 10434 - 10440