The ginzburg-landau equation in the Heisenberg group

被引:7
|
作者
Birindelli, Isabeau [1 ]
Valdinoci, Enrico [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
subelliptic operators and minimal surfaces on the Heisenberg group; Allen-Cahn-Ginzburg-Landau-type functionals; geometric properties of minimizers;
D O I
10.1142/S0219199708002946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a functional related with phase transition models in the Heisenberg group framework. We prove that level sets of local minimizers satisfy some density estimates, that is, they behave as "codimension one" sets. We thus deduce a uniform convergence property of these level sets to interfaces with minimal area. These results are then applied in the construction of (quasi) periodic, plane-like minimizers, i.e. minimizers of our functional whose level sets are contained in a spacial slab of universal size in a prescribed direction. As a limiting case, we obtain the existence of hypersurfaces contained in such a slab which minimize the surface area with respect to a given periodic metric.
引用
收藏
页码:671 / 719
页数:49
相关论文
共 50 条
  • [31] Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions
    Bethuel, F
    Brezis, H
    Orlandi, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) : 432 - 520
  • [32] Vortex dynamics for the Ginzburg-Landau wave equation
    R.L. Jerrard
    Calculus of Variations and Partial Differential Equations, 1999, 9 : 1 - 30
  • [33] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [34] ON THE NUMBER OF DETERMINING NODES FOR THE GINZBURG-LANDAU EQUATION
    KUKAVICA, I
    NONLINEARITY, 1992, 5 (05) : 997 - 1006
  • [35] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [36] ONSET OF CHAOS IN THE GENERALIZED GINZBURG-LANDAU EQUATION
    MALOMED, BA
    NEPOMNYASHCHY, AA
    PHYSICAL REVIEW A, 1990, 42 (10): : 6238 - 6240
  • [37] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [38] HOMOCLINIC EXPLOSIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    LUCE, BP
    PHYSICA D, 1995, 84 (3-4): : 553 - 581
  • [39] Numerical experiments on the controllability of the Ginzburg-Landau equation
    Garzon, R.
    Valente, V.
    TOPICS ON MATHEMATICS FOR SMART SYSTEMS, 2007, : 122 - +
  • [40] CLASSIFICATION OF SYMMETRIC VORTICES FOR THE GINZBURG-LANDAU EQUATION
    Sauvageot, Myrto
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (07) : 721 - 760