Efficient accuracy evaluation for multi-modal sensed data

被引:2
|
作者
Zhang, Yan [1 ]
Wang, Hongzhi [1 ]
Gao, Hong [1 ]
Li, Jianzhong [1 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Data quality; Accuracy; Sensed data; TRUTH;
D O I
10.1007/s10878-015-9920-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data accuracy is an important aspect in sensed data quality. Thus one necessary task for data quality management is to evaluate the accuracy of sensed data. However, to our best knowledge, neither measure nor effective methods for the accuracy evaluation are proposed for multi-typed sensed data. To address the problem for accuracy evaluation, we propose a systematic method. With MSE, a parameter to measure the accuracy in statistics, we design the accuracy evaluation framework for multi-modal data. Within this framework, we classify data types into three categories and develop accuracy evaluation algorithms for each category in cases of in presence and absence of true values. Extensive experimental results show the efficiency and effectiveness of our proposed framework and algorithms.
引用
收藏
页码:1068 / 1088
页数:21
相关论文
共 50 条
  • [31] Multi-Modal Data Fusion for Big Events
    Papacharalapous, A. E.
    Hovelynck, Stefan
    Cats, O.
    Lankhaar, J. W.
    Daamen, W.
    van Oort, N.
    van Lint, J. W. C.
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2015, 7 (04) : 5 - 10
  • [32] Deep Object Tracking with Multi-modal Data
    Zhang, Xuezhi
    Yuan, Yuan
    Lu, Xiaoqiang
    2016 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2016, : 161 - 165
  • [33] A concept of multi-modal evaluation of multimedia quality
    Koncept vec-modalnega evalvatorja kakovosti multimedije
    Lovrencic, T. (tomaz.lovrencic@telekom.si), 2012, Electrotechnical Society of Slovenia (79): : 165 - 168
  • [34] Evaluation and Discussion of Multi-modal Emotion Recognition
    Rabie, Ahmad
    Wrede, Britta
    Vogt, Thurid
    Hanheide, Marc
    SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 598 - +
  • [35] Multi-modal translation system and its evaluation
    Morishima, S
    Nakamura, S
    FOURTH IEEE INTERNATIONAL CONFERENCE ON MULTIMODAL INTERFACES, PROCEEDINGS, 2002, : 241 - 246
  • [36] A concept of multi-modal evaluation of multimedia quality
    Lovrencic, Tomaz
    Stular, Mitja
    Zgank, Andrej
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2012, 79 (04): : 165 - 168
  • [37] Efficient and fast multi-modal foreground-background segmentation using RGBD data
    Trabelsi, Rim
    Jabri, Issam
    Smach, Fethi
    Bouallegue, Ammar
    PATTERN RECOGNITION LETTERS, 2017, 97 : 13 - 20
  • [38] METEOR: Learning Memory and Time Efficient Representations from Multi-modal Data Streams
    Silva, Amila
    Karunasekera, Shanika
    Leckie, Christopher
    Luo, Ling
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1375 - 1384
  • [39] A Universal and Efficient Multi-Modal Smart Contract Vulnerability Detection Framework for Big Data
    Lian, Wenjuan
    Bao, Zikang
    Zhang, Xinze
    Jia, Bin
    Zhang, Yang
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (01) : 190 - 207
  • [40] Dynamic Multi-modal Prompting for Efficient Visual Grounding
    Wu, Wansen
    Liu, Ting
    Wang, Youkai
    Xu, Kai
    Yin, Quanjun
    Hu, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VII, 2024, 14431 : 359 - 371