A Family of Waiting time Distributions Arising from a Bivariate Bernoulli Scheme

被引:0
|
作者
Barakat, H. M. [1 ]
机构
[1] Zagazig Univ, Dept Math, Fac Sci, Zagazig, Egypt
来源
关键词
Bernoulli scheme; bivariate binomial distribution; exponential distribution; geometric distribution; lifetime distributions;
D O I
10.1007/s13226-019-0319-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new univariate five-parameter generalized negative binomial distribution based on the bivariate Bernoulli scheme is introduced. This distribution produces a new three-parameter generalized geometric distribution in a natural manner using probabilistic properties of the four-outcome model. Some basic statistical properties of the new distribution are studied. In addition, estimation of the unknown parameters is illustrated. Moreover, a new univariate three-parameter generalized exponential distribution is derived as a limit of the proposed three-parameter generalized geometric distribution. Finally, a generalization of the proposed distributions based on trivariate Bernoulli scheme is introduced.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 50 条
  • [21] GENERALIZED BERNOULLI SCHEME AND ITS LIMIT DISTRIBUTIONS
    MAKSIMOV, VM
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1973, 18 (03): : 547 - 556
  • [22] On a waiting time distribution in a sequence of Bernoulli trials
    Koutras, MV
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (04) : 789 - 806
  • [23] On some distributions arising from a generalized trivariate reduction scheme
    Chesneau, Christophe
    Kachour, Maher
    Karlis, Dimitris
    STATISTICAL METHODOLOGY, 2015, 25 : 36 - 50
  • [24] Estimating Entropy Production from Waiting Time Distributions
    Skinner, Dominic J.
    Dunkel, Jorn
    PHYSICAL REVIEW LETTERS, 2021, 127 (19)
  • [25] Meeting time distributions in Bernoulli systems
    Akaishi, A.
    Hirata, M.
    Yamamoto, K.
    Shudo, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (37)
  • [26] Properties and applications of the Sarmanov family of bivariate distributions
    Lee, MLT
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (06) : 1207 - 1222
  • [27] Bivariate Topp-Leone family of distributions
    Nagar, Daya K.
    Zarrazola, Edwin
    Echeverri-Valencia, Santiago
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1007 - 1024
  • [28] A family of bivariate distributions and its applications in hydrology
    Salazar-Gomez, R. Antonio
    Cruz-Medina, I. Roberto
    AGROCIENCIA, 2007, 41 (08) : 903 - 912
  • [29] THE CAMBANIS FAMILY OF BIVARIATE DISTRIBUTIONS: PROPERTIES AND APPLICATIONS
    Nair, N. Unnikrishnan
    Scaria, Johny
    Mohan, Sithara
    STATISTICA, 2016, 76 (02) : 169 - 184
  • [30] TRANSLATION FAMILY OF BIVARIATE DISTRIBUTIONS AND FRECHETS BOUNDS
    MARDIA, KV
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1970, 32 (MAR): : 119 - 122