Star clusters in independence complexes of graphs

被引:24
|
作者
Barmak, Jonathan Ariel [1 ]
机构
[1] Kungliga Tekniska Hogskolan, Dept Math, Stockholm, Sweden
关键词
Independence complexes; Graphs; Simplicial complexes; Homotopy types; Homotopy invariants;
D O I
10.1016/j.aim.2013.03.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of star cluster of a simplex in a simplicial complex. This concept provides a general tool to study the topology of independence complexes of graphs. We use star clusters to answer a question arisen from works of Engstrom and Jonsson on the homotopy type of independence complexes of triangle-free graphs and to investigate a large number of examples which appear in the literature. We present an alternative way to study the chromatic and clique numbers of a graph from a homotopical point of view and obtain new results regarding the connectivity of independence complexes. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 57
页数:25
相关论文
共 50 条
  • [41] Optimal Graphs for Independence and k-Independence Polynomials
    Brown, J. I.
    Cox, D.
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1445 - 1457
  • [42] Optimal Graphs for Independence and k-Independence Polynomials
    J. I. Brown
    D. Cox
    Graphs and Combinatorics, 2018, 34 : 1445 - 1457
  • [43] On the independence polynomial of the corona of graphs
    Levit, Vadim E.
    Mandrescu, Eugen
    DISCRETE APPLIED MATHEMATICS, 2016, 203 : 85 - 93
  • [44] Independence number in path graphs
    Knor, M
    Niepel, L
    COMPUTING AND INFORMATICS, 2004, 23 (02) : 179 - 187
  • [45] Generalized independence and domination in graphs
    Borowiecki, M
    Michalak, D
    DISCRETE MATHEMATICS, 1998, 191 (1-3) : 51 - 56
  • [46] On the coefficients of the independence polynomial of graphs
    Shuchao Li
    Lin Liu
    Yueyu Wu
    Journal of Combinatorial Optimization, 2017, 33 : 1324 - 1342
  • [47] ON THE INDEPENDENCE NUMBER OF RANDOM GRAPHS
    FRIEZE, AM
    DISCRETE MATHEMATICS, 1990, 81 (02) : 171 - 175
  • [48] Independence and chromatic densities of graphs
    Bonato, Anthony
    Brown, Jason I.
    Kemkes, Graeme
    Pralat, Pawel
    JOURNAL OF COMBINATORICS, 2011, 2 (03) : 397 - 411
  • [49] On the independence ratio of distance graphs
    Carraher, James M.
    Galvin, David
    Hartke, Stephen G.
    Radcliffe, A. J.
    Stolee, Derrick
    DISCRETE MATHEMATICS, 2016, 339 (12) : 3058 - 3072
  • [50] Distance Independence Polynomial of Graphs
    Arriesgado, Amelia L.
    Salim, Jeffrey Imer C.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1231 - 1236