Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

被引:245
|
作者
Liang, Chu
Gao, Mingxia [1 ]
Pan, Hongge
Liu, Yongfeng
Yan, Mi
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
Lithium-ion batteries; Lithium alloys; Metal oxides; Electrochemical properties; Lithium storage mechanisms; SITU X-RAY; NEGATIVE-ELECTRODE MATERIALS; SN-C COMPOSITE; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; ALPHA-FE2O3; NANOTUBES; NANOCOMPOSITE ANODES; REVERSIBLE CAPACITY; CARBON NANOTUBES; AMORPHOUS OXIDE;
D O I
10.1016/j.jallcom.2013.04.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [31] SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries
    Chen, Jun Song
    Cheah, Yan Ling
    Chen, Yuan Ting
    Jayaprakash, N.
    Madhavi, Srinivasan
    Yang, Yan Hui
    Lou, Xiong Wen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47): : 20504 - 20508
  • [32] Enhanced Electrochemical Performance Promoted by Tin in Silica Anode Materials for Stable and High-Capacity Lithium-Ion Batteries
    Ding, Xuli
    Liang, Daowei
    Zhao, Hongda
    MATERIALS, 2021, 14 (05) : 1 - 11
  • [33] Interconnected MoO2 Nanocrystals with Carbon Nanocoating as High-Capacity Anode Materials for Lithium-ion Batteries
    Zhou, Liang
    Wu, Hao Bin
    Wang, Zhiyu
    Lou, Xiong Wen
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) : 4853 - 4857
  • [34] Metal Organic Framework-Derived Cobalt Dicarboxylate as a High-Capacity Anode Material for Lithium-ion Batteries
    Wang, Liping
    Zhao, Mingjuan
    Qiu, Jiliang
    Gao, Peng
    Xue, Jing
    Li, Jingze
    ENERGY TECHNOLOGY, 2017, 5 (04) : 637 - 642
  • [35] Metal-Organic Framework as Anode Materials for Lithium-Ion Batteries with High Capacity and Rate Performance
    Yin, Chengjie
    Xu, Linfeng
    Pan, Yusong
    Pan, Chengling
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11): : 10776 - 10786
  • [36] Silicon oxides: a promising family of anode materials for lithium-ion batteries
    Liu, Zhenhui
    Yu, Qiang
    Zhao, Yunlong
    He, Ruhan
    Xu, Ming
    Feng, Shihao
    Li, Shidong
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL SOCIETY REVIEWS, 2019, 48 (01) : 285 - 309
  • [37] Advanced Anode Materials Based on Iron Oxides for Lithium-Ion Batteries
    Pan, Yue
    Tong, Kun
    Tian, Ruyu
    Sun, Limei
    Chen, Yang
    NANO, 2023, 18 (06)
  • [38] COLL 80-Cation-deficient iron oxides as high-capacity cathode materials for lithium-ion batteries
    Hahn, Benjamin P.
    Long, Jeffrey W.
    Pettigrew, Katherine A.
    Rolison, Debra R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [39] Inelastic hosts as electrodes for high-capacity lithium-ion batteries
    Zhao, Kejie
    Pharr, Matt
    Vlassak, Joost J.
    Suo, Zhigang
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)
  • [40] Electrochemical properties of metal oxides as anode materials for lithium ion batteries
    F. R. Lipparoni
    F. Bonino
    S. Panero
    B. Scrosati
    Ionics, 2002, 8 : 177 - 182