Analysis and efficient implementation of alternating direction implicit finite volume method for Riesz space-fractional diffusion equations in two space dimensions

被引:11
|
作者
Liu, Huan [1 ]
Zheng, Xiangcheng [2 ]
Fu, Hongfei [3 ]
Wang, Hong [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[3] Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ADI; fast solution algorithm; finite volume method; space-fractional diffusion equation; stability and convergence analysis; SPECTRAL METHOD; ANOMALOUS DIFFUSION; DIFFERENCE METHOD; ELEMENT-METHOD; APPROXIMATIONS; SCHEME; CONVERGENCE; REGULARITY; STABILITY;
D O I
10.1002/num.22554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop a Crank-Nicolson alternating direction implicit finite volume method for time-dependent Riesz space-fractional diffusion equation in two space dimensions. Norm-based stability and convergence analysis are given to show that the developed method is unconditionally stable and of second-order accuracy both in space and time. Furthermore, we develop a lossless matrix-free fast conjugate gradient method for the implementation of the numerical scheme, which only hasO(N)memory requirement andO(NlogN)computational complexity per iteration withNbeing the total number of spatial unknowns. Several numerical experiments are presented to demonstrate the effectiveness and efficiency of the proposed scheme for large-scale modeling and simulations.
引用
收藏
页码:818 / 835
页数:18
相关论文
共 50 条
  • [21] A PRECONDITIONED FAST HERMITE FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Zhao, Meng
    Cheng, Aijie
    Wang, Hong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3529 - 3545
  • [22] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Sun, Hong Guang
    Wang, Zhaoyang
    Nie, Jiayi
    Zhang, Yong
    Xiao, Rui
    COMPUTATIONAL MECHANICS, 2021, 67 (01) : 17 - 32
  • [23] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [24] The finite volume element method for the two-dimensional space-fractional convection-diffusion equation
    Bi, Yanan
    Jiang, Ziwen
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [25] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [26] Spectral Galerkin Methods for Riesz Space-Fractional Convection-Diffusion Equations
    Zhang, Xinxia
    Wang, Jihan
    Wu, Zhongshu
    Tang, Zheyi
    Zeng, Xiaoyan
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [27] A numerical approach for the Riesz space-fractional Fisher' equation in two-dimensions
    Zhu, Xiaogang
    Nie, Yufeng
    Wang, Jungang
    Yuan, Zhanbin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (02) : 296 - 315
  • [28] Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 52 - 65
  • [29] An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions
    Macias-Diaz, J. E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 67 - 87
  • [30] An efficient multigrid method with preconditioned smoother for two-dimensional anisotropic space-fractional diffusion equations
    Xu, Yuan
    Lei, Siu-Long
    Sun, Hai-Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 124 (218-226) : 218 - 226