Robustness of posynomial geometric programming optima

被引:8
|
作者
Federowicz, AJ
Rajgopal, J
机构
[1] Westinghouse Res & Dev Ctr, Pittsburgh, PA USA
[2] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA
关键词
geometric programming; posynomials; sensitivity analysis;
D O I
10.1007/s101070050065
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper develops a simple bounding procedure for the optimal value of a posynomial geometric programming (GP) problem when some of the coefficients for terms in the problems objective function are estimated with error. The bound may be computed even before the problem is solved and it is shown analytically that the optimum value is very insensitive to errors in the coefficients; for example, a 20% error could cause the optimum to be wrong by no more than 1.67%.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 50 条
  • [41] OPTIMA CONDITION IN WHOLE NUMBER PROGRAMMING
    GUIGNARD, M
    REVUE FRANCAISE D INFORMATIQUE DE RECHERCHE OPERATIONNELLE, 1971, 5 (NR2): : 108 - &
  • [42] OPTIMIZATION OF THE 2ND ORDER LOGARITHMIC MACHINING ECONOMICS PROBLEM BY EXTENDED GEOMETRIC-PROGRAMMING .2. POSYNOMIAL CONSTRAINTS
    HOUGH, CL
    GOFORTH, RE
    AIIE TRANSACTIONS, 1981, 13 (03): : 234 - 242
  • [43] Geometric programming: A programming approach to geometric design
    Paoluzzi, A
    Pascucci, V
    Vicentino, M
    ACM TRANSACTIONS ON GRAPHICS, 1995, 14 (03): : 266 - 306
  • [44] GEOMETRIC PROGRAMMING
    HAMALA, M
    EKONOMICKO-MATEMATICKY OBZOR, 1969, (01): : 1 - 12
  • [45] GEOMETRIC PROGRAMMING
    PETERSON, EL
    SIAM REVIEW, 1976, 18 (01) : 1 - 51
  • [46] Semi-online maintenance of geometric optima and measures
    Chan, TM
    PROCEEDINGS OF THE THIRTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2002, : 474 - 483
  • [47] Semi-online maintenance of geometric optima and measures
    Chan, TM
    SIAM JOURNAL ON COMPUTING, 2003, 32 (03) : 700 - 716
  • [48] Robustness in CAD geometric constructions
    Schreck, P
    FIFTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2001, : 111 - 116
  • [49] Robustness issues in geometric algorithms
    Lecture Notes in Computer Science, 1148
  • [50] Robustness and duality in linear programming
    Gabrel, V.
    Murat, C.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2010, 61 (08) : 1288 - 1296