Fourier coefficients of three-dimensional vector-valued modular forms

被引:7
|
作者
Marks, Christopher [1 ]
机构
[1] Calif State Univ Chico, Dept Math & Stat, Chico, CA 95929 USA
基金
加拿大自然科学与工程研究理事会;
关键词
DIMENSION; B-3;
D O I
10.4310/CNTP.2015.v9.n2.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that only a finite number of three-dimensional, irreducible representations of the modular group admit vector-valued modular forms with bounded denominators. This provides a verification, in the three-dimensional setting, of a conjecture concerning the Fourier coefficients of noncongruence modular forms, and reinforces the understanding from mathematical physics that when such a representation arises in rational conformal field theory, its kernel should be a congruence subgroup of the modular group.
引用
收藏
页码:387 / 411
页数:25
相关论文
共 50 条
  • [21] On the structure of modules of vector-valued modular forms
    Franc, Cameron
    Mason, Geoffrey
    RAMANUJAN JOURNAL, 2018, 47 (01): : 117 - 139
  • [22] Equivariant functions and vector-valued modular forms
    Saber, Hicham
    Sebbar, Abdellah
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (04) : 949 - 954
  • [23] ON THE COMPUTATION OF GENERAL VECTOR-VALUED MODULAR FORMS
    Magnusson, Tobias
    Raum, Martin
    MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2861 - 2891
  • [24] On the structure of modules of vector-valued modular forms
    Cameron Franc
    Geoffrey Mason
    The Ramanujan Journal, 2018, 47 : 117 - 139
  • [25] Computations of vector-valued Siegel modular forms
    Ghitza, Alexandru
    Ryan, Nathan C.
    Sulon, David
    JOURNAL OF NUMBER THEORY, 2013, 133 (11) : 3921 - 3940
  • [26] Vector-Valued Modular Forms and the Gauss Map
    Dalla Piazza, Francesco
    Fiorentino, Alessio
    Grushevsky, Samuel
    Perna, Sara
    Manni, Riccardo Salvati
    DOCUMENTA MATHEMATICA, 2017, 22 : 1063 - 1080
  • [27] Structure of the module of vector-valued modular forms
    Marks, Christopher
    Mason, Geoffrey
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 32 - 48
  • [28] A trace formula for vector-valued modular forms
    Bantay, P.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (06)
  • [29] Vector-valued modular forms and Poincare series
    Knopp, M
    Mason, G
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (04) : 1345 - 1366
  • [30] Vector-valued Hermitian and quaternionic modular forms
    Freitag, Eberhard
    Manni, Riccardo Salvati Salvati
    KYOTO JOURNAL OF MATHEMATICS, 2015, 55 (04) : 819 - 836