Estimating aboveground biomass in interior Alaska with Landsat data and field measurements

被引:79
|
作者
Ji, Lei [1 ]
Wylie, Bruce K. [2 ]
Nossov, Dana R. [3 ]
Peterson, Birgit [1 ]
Waldrop, Mark P. [4 ]
McFarland, Jack W. [4 ]
Rover, Jennifer [2 ]
Hollingsworth, Teresa N. [5 ]
机构
[1] US Geol Survey, ASRC Res & Technol Solut, Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA
[2] US Geol Survey, EROS Ctr, Sioux Falls, SD 57198 USA
[3] Univ Alaska Fairbanks, Boreal Ecol Cooperat Res Unit, Fairbanks, AK 99775 USA
[4] US Geol Survey, Menlo Pk, CA 94025 USA
[5] US Forest Serv, Boreal Ecol Cooperat Res Unit, Pacific NW Res Stn, USDA, Fairbanks, AK 99775 USA
来源
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION | 2012年 / 18卷
关键词
Aboveground biomass; Spectral vegetation index; Landsat; Lidar; Alaska; Yukon Flats ecoregion; WATER INDEX NDWI; NORTHERN ALASKA; FOREST BIOMASS; BOREAL FORESTS; ETM+ DATA; VEGETATION; TM; PERFORMANCE; FIRE; PRODUCTIVITY;
D O I
10.1016/j.jag.2012.03.019
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Terrestrial plant biomass is a key biophysical parameter required for understanding ecological systems in Alaska. An accurate estimation of biomass at a regional scale provides an important data input for ecological modeling in this region. In this study, we created an aboveground biomass (AGB) map at 30-m resolution for the Yukon Flats ecoregion of interior Alaska using Landsat data and field measurements. Tree, shrub, and herbaceous AGB data in both live and dead forms were collected in summers and autumns of 2009 and 2010. Using the Landsat-derived spectral variables and the field AGB data, we generated a regression model and applied this model to map AGB for the ecoregion. A 3-fold cross-validation indicated that the AGB estimates had a mean absolute error of 21.8 Mg/ha and a mean bias error of 5.2 Mg/ha. Additionally, we validated the mapping results using an airborne lidar dataset acquired for a portion of the ecoregion. We found a significant relationship between the lidar-derived canopy height and the Landsat-derived AGB (R-2 = 0.40). The AGB map showed that 90% of the ecoregion had AGB values ranging from 10 Mg/ha to 134 Mg/ha. Vegetation types and fires were the primary factors controlling the spatial AGB patterns in this ecoregion. Published by Elsevier B.V.
引用
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [21] Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda
    Avitabile, Valerio
    Baccini, Alessandro
    Friedl, Mark A.
    Schmullius, Christiane
    REMOTE SENSING OF ENVIRONMENT, 2012, 117 : 366 - 380
  • [22] Estimation of Forest Aboveground Biomass in North China Based on Landsat Data and Stand Features
    Song, Cheng
    Li, Zechen
    Dai, Yingcheng
    Liu, Tian
    Li, Jianjun
    Forests, 2025, 16 (03):
  • [23] Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior alaska
    Mack, Michelle C.
    Treseder, Kathleen K.
    Manies, Kristen L.
    Harden, Jennifer W.
    Schuur, Edward A. G.
    Vogel, Jason G.
    Randerson, James T.
    Chapin, F. Stuart, III
    ECOSYSTEMS, 2008, 11 (02) : 209 - 225
  • [24] Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska
    Michelle C. Mack
    Kathleen K. Treseder
    Kristen L. Manies
    Jennifer W. Harden
    Edward A. G. Schuur
    Jason G. Vogel
    James T. Randerson
    F. Stuart Chapin
    Ecosystems, 2008, 11 : 209 - 225
  • [25] SOIL NUTRIENT AVAILABILITY AND RELATIONSHIPS WITH ABOVEGROUND BIOMASS PRODUCTION ON POSTHARVESTED UPLAND WHITE SPRUCE SITES IN INTERIOR ALASKA
    PARE, D
    VANCLEVE, K
    CANADIAN JOURNAL OF FOREST RESEARCH, 1993, 23 (06) : 1223 - 1232
  • [26] Estimating aboveground biomass of oil palm: Allometric equations for estimating frond biomass
    Aholoukpe, H.
    Dubos, B.
    Flori, A.
    Deleporte, P.
    Amadji, G.
    Chotte, J. L.
    Blavet, D.
    FOREST ECOLOGY AND MANAGEMENT, 2013, 292 : 122 - 129
  • [27] Estimating winter wheat biomass based on LANDSAT TM and MODIS data
    Bao, Yansong
    Gao, Wei
    Gao, Zhiqiang
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY V, 2008, 7083
  • [28] Combining Multiple Geospatial Data for Estimating Aboveground Biomass in North Carolina Forests
    Hashemi-Beni, Leila
    Kurkalova, Lyubov A.
    Mulrooney, Timothy J.
    Azubike, Chinazor S.
    REMOTE SENSING, 2021, 13 (14)
  • [29] Estimating aboveground biomass using Landsat TM imagery: A case study of Anatolian Crimean pine forests in Turkey
    Gunlu, A.
    Ercanli, I.
    Baskent, E. Z.
    Cakir, G.
    ANNALS OF FOREST RESEARCH, 2014, 57 (02) : 289 - 298
  • [30] Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review
    Nguyen, Trung H.
    Jones, Simon
    Soto-Berelov, Mariela
    Haywood, Andrew
    Hislop, Samuel
    REMOTE SENSING, 2020, 12 (01)