Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals

被引:91
|
作者
Shalbaf, Ahmad [1 ]
Bagherzadeh, Sara [2 ]
Maghsoudi, Arash [2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Med, Dept Biomed Engn & Med Phys, Tehran, Iran
[2] Islamic Azad Univ, Dept Biomed Engn, Sci & Res Brach, Tehran, Iran
关键词
Schizophrenia; Electroencephalogram; Transfer learning; Convolutional neural network; Continuous wavelet transform; COMPUTER-AIDED DIAGNOSIS; WHITE-MATTER VOLUMES; PREDICTION; DYNAMICS; SYSTEM; CANCER; GRAY;
D O I
10.1007/s13246-020-00925-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Schizophrenia (SZ) is a severe disorder of the human brain which disturbs behavioral characteristics such as interruption in thinking, memory, perception, speech and other living activities. If the patient suffering from SZ is not diagnosed and treated in the early stages, damage to human behavioral abilities in its later stages could become more severe. Therefore, early discovery of SZ may help to cure or limit the effects. Electroencephalogram (EEG) is prominently used to study brain diseases such as SZ due to having high temporal resolution information, and being a noninvasive and inexpensive method. This paper introduces an automatic methodology based on transfer learning with deep convolutional neural networks (CNNs) for the diagnosis of SZ patients from healthy controls. First, EEG signals are converted into images by applying a time-frequency approach called continuous wavelet transform (CWT) method. Then, the images of EEG signals are applied to the four popular pre-trained CNNs: AlexNet, ResNet-18, VGG-19 and Inception-v3. The output of convolutional and pooling layers of these models are used as deep features and are fed into the support vector machine (SVM) classifier. We have tuned the parameters of SVM to classify SZ patients and healthy subjects. The efficiency of the proposed method is evaluated on EEG signals from 14 healthy subjects and 14 SZ patients. The experiments showed that the combination of frontal, central, parietal, and occipital regions applied to the ResNet-18-SVM achieved best results with accuracy, sensitivity and specificity of 98.60% +/- 2.29, 99.65% +/- 2.35 and 96.92% +/- 2.25, respectively. Therefore, the proposed method as a diagnostic tool can help clinicians in detection of the SZ patients for early diagnosis and treatment.
引用
收藏
页码:1229 / 1239
页数:11
相关论文
共 50 条
  • [1] Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
    Ahmad Shalbaf
    Sara Bagherzadeh
    Arash Maghsoudi
    Physical and Engineering Sciences in Medicine, 2020, 43 : 1229 - 1239
  • [2] Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals
    Oh, Shu Lih
    Vicnesh, Jahmunah
    Ciaccio, Edward J.
    Yuvaraj, Rajamanickam
    Acharya, U. Rajendra
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [3] Deep Convolutional Neural Network for Automated Detection of Mind Wandering using EEG Signals
    Hosseini, Seyedroohollah
    Guo, Xuan
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 314 - 319
  • [4] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [5] Automated diagnosis of schizophrenia using EEG microstates and Deep Convolutional Neural Network
    Lillo, Eric
    Mora, Marco
    Lucero, Boris
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 209
  • [6] A deep convolutional neural network model for automated identification of abnormal EEG signals
    Yildirim, Ozal
    Baloglu, Ulas Baran
    Acharya, U. Rajendra
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20): : 15857 - 15868
  • [7] A deep convolutional neural network model for automated identification of abnormal EEG signals
    Özal Yıldırım
    Ulas Baran Baloglu
    U. Rajendra Acharya
    Neural Computing and Applications, 2020, 32 : 15857 - 15868
  • [8] Schizophrenia Detection on EEG Signals Using an Ensemble of a Lightweight Convolutional Neural Network
    Hussain, Muhammad
    Alsalooli, Noudha Abdulrahman
    Almaghrabi, Norah
    Qazi, Emad-ul-Haq
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [9] Deep Convolutional Neural Network Regularization for Alcoholism Detection Using EEG Signals
    Mukhtar, Hamid
    Qaisar, Saeed Mian
    Zaguia, Atef
    SENSORS, 2021, 21 (16)
  • [10] Automated EEG pathology detection based on different convolutional neural network models: Deep learning approach
    Bajpai, Rishabh
    Yuvaraj, Rajamanickam
    Prince, A. Amalin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133