A new method for solving initial value problems

被引:7
|
作者
Rahmanzadeh, Mostafa [1 ]
Cai, Long [2 ]
White, Ralph E. [2 ]
机构
[1] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Energy, Kerman, Iran
[2] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
关键词
Euler; Runge-Kutta; ODE;
D O I
10.1016/j.compchemeng.2013.06.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A more accurate method (comparing to the Euler, Runge-Kutta, and implicit Runge-Kutta methods) for the numerical solutions of ordinary differential equations (ODEs) is presented in this paper. The coefficients in the approximate solution for the ODE using the proposed method are divided into two groups: the fixed coefficients and the free coefficients. The fixed coefficients are determined by using the same way as in the traditional Taylor series method. The free coefficients are obtained optimally by minimizing the error of the approximate solution in each time interval. Examples are presented to compare the numerical solutions of the Rahmanzadeh, Cai, and White's method (RCW) to those of other popular ODEs methods. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 50 条
  • [41] An innovative harmonic numbers operational matrix method for solving initial value problems
    Napoli, Anna
    Abd-Elhameed, W. M.
    CALCOLO, 2017, 54 (01) : 57 - 76
  • [42] An innovative harmonic numbers operational matrix method for solving initial value problems
    Anna Napoli
    W. M. Abd-Elhameed
    Calcolo, 2017, 54 : 57 - 76
  • [43] Further developments to the decomposition method for solving singular initial-value problems
    Aslanov, Afgan
    Abu-Alshaikh, Ibrahim
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (5-6) : 700 - 711
  • [44] A NUMERICAL METHOD FOR SOLVING THE INITIAL VALUE PROBLEMS OF STIFF ORDINARY DIFFERENTIAL EQUATIONS
    韩天敏
    Science China Mathematics, 1976, (02) : 180 - 198
  • [45] The Legendre wavelet method for solving initial value problems of Bratu-type
    Venkatesh, S. G.
    Ayyaswamy, S. K.
    Balachandar, S. Raja
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (08) : 1287 - 1295
  • [46] Multistage optimal homotopy asymptotic method for solving initial-value problems
    Anakira, N. R.
    Alomari, A. K.
    Jameel, A. F.
    Hashim, I.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1826 - 1843
  • [47] DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING HIGH ORDER FUZZY INITIAL VALUE PROBLEMS
    Jameel, A. F.
    Anakira, N. R.
    Rashidi, M. M.
    Alomari, A. K.
    Saaban, A.
    Shakhatreh, M. A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 194 - 208
  • [48] An Initial Value Method for Solving Singularly Perturbed Boundary Value Problems Using Adaptive Grids
    Mohapatra J.
    Mahalik M.K.
    Computational Mathematics and Modeling, 2018, 29 (1) : 48 - 58
  • [49] A New Method for Solving Singularly Perturbed Boundary Value Problems
    El-Zahar, Essam R.
    El-Kabeir, Saber M. M.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (03): : 927 - 938
  • [50] NEW PREDICTOR CORRECTOR TRAPEZOIDAL FORMULAS FOR SOLVING INITIAL-VALUE PROBLEMS
    SANUGI, BB
    EVANS, DJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 33 (1-2) : 77 - 94