Synaptic weighting in single flux quantum neuromorphic computing

被引:24
|
作者
Schneider, M. L. [1 ]
Donnelly, C. A. [1 ,2 ]
Haygood, I. W. [1 ]
Wynn, A. [3 ]
Russek, S. E. [1 ]
Castellanos-Beltran, M. A. [1 ]
Dresselhaus, P. D. [1 ]
Hopkins, P. F. [1 ]
Pufall, M. R. [1 ]
Rippard, W. H. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] MIT, Lincoln Coll, Lexington, MA 02420 USA
关键词
D O I
10.1038/s41598-020-57892-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Josephson junctions act as a natural spiking neuron-like device for neuromorphic computing. By leveraging the advances recently demonstrated in digital single flux quantum (SFQ) circuits and using recently demonstrated magnetic Josephson junction (MJJ) synaptic circuits, there is potential to make rapid progress in SFQ-based neuromorphic computing. Here we demonstrate the basic functionality of a synaptic circuit design that takes advantage of the adjustable critical current demonstrated in MJJs and implement a synaptic weighting element. The devices were fabricated with a restively shunted Nb/AlOx-Al/Nb process that did not include MJJs. Instead, the MJJ functionality was tested by making multiple circuits and varying the critical current, but not the external shunt resistance, of the oxide Josephson junction that represents the MJJ. Experimental measurements and simulations of the fabricated circuits are in good agreement.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
    Wang, Zhongrui
    Joshi, Saumil
    Savel'ev, Sergey E.
    Jiang, Hao
    Midya, Rivu
    Lin, Peng
    Hu, Miao
    Ge, Ning
    Strachan, John Paul
    Li, Zhiyong
    Wu, Qing
    Barne, Mark
    Li, Geng-Lin
    Xin, Huolin L.
    Williams, R. Stanley
    Xia, Qiangfei
    Yang, J. Joshua
    NATURE MATERIALS, 2017, 16 (01) : 101 - 108
  • [32] Polymer synaptic transistors from memory to neuromorphic computing
    Yang, Yu-Ting
    Tien, Hsin-Chiao
    Chueh, Chu-Chen
    Lee, Wen-Ya
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 287
  • [33] Nanowire-based synaptic devices for neuromorphic computing
    Chen, Xue
    Chen, Bingkun
    Zhao, Pengfei
    Roy, Vellaisamy A. L.
    Han, Su-Ting
    Zhou, Ye
    MATERIALS FUTURES, 2023, 2 (02):
  • [34] High-performance synaptic transistors for neuromorphic computing
    钟海
    孙勤超
    李果
    杜剑宇
    黄河意
    郭尔佳
    何萌
    王灿
    杨国桢
    葛琛
    金奎娟
    Chinese Physics B, 2020, 29 (04) : 4 - 17
  • [35] ReRAM-based Synaptic Device for Neuromorphic Computing
    Jang, Jun-Woo
    Park, Sangsu
    Jeong, Yoon-Ha
    Hwang, Hyunsang
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 1054 - 1057
  • [36] Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing
    Monalisha, P.
    Kumar, Anil P. S.
    Wang, Xiao Renshaw
    Piramanayagam, S. N.
    ACS Applied Materials and Interfaces, 2022, 14 (09): : 11864 - 11872
  • [37] Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing
    Monalisha, P.
    Kumar, Anil P. S.
    Wang, Xiao Renshaw
    Piramanayagam, S. N.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) : 11864 - 11872
  • [38] Graphene oxide based synaptic memristor device for neuromorphic computing
    Sahu, Dwipak Prasad
    Jetty, Prabana
    Jammalamadaka, S. Narayana
    NANOTECHNOLOGY, 2021, 32 (15)
  • [39] Mitigating Nonlinear Effect of Memristive Synaptic Device for Neuromorphic Computing
    Fu, Jingyan
    Liao, Zhiheng
    Gong, Na
    Wang, Jinhui
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2019, 9 (02) : 377 - 387
  • [40] Amorphous InGaZnO (a-IGZO) Synaptic Transistor for Neuromorphic Computing
    Jang, Yuseong
    Park, Junhyeong
    Kang, Jimin
    Lee, Soo-Yeon
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (04) : 1427 - 1448