Fast and accurate finite-difference method solving multicomponent Smoluchowski coagulation equation with source and sink terms

被引:9
|
作者
Smirnov, Alexander P. [2 ,3 ]
Matveev, Sergey A. [1 ,2 ,3 ]
Zheltkov, Dmitry A. [2 ,3 ]
Tyrtyshnikov, Euegene E. [2 ,3 ,4 ,5 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow, Russia
[3] RAS, Inst Numer Math, Moscow, Russia
[4] Moscow Inst Phys & Technol, Moscow, Russia
[5] Univ Podlasie, Siedlce, Poland
基金
俄罗斯科学基金会;
关键词
tensor train decomposition; multicomponent Smoluchowski equation; runge-kutta scheme; convolution; SIMULATION; DYNAMICS;
D O I
10.1016/j.procs.2016.05.533
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work we present novel numerical method solving multicomponent Smoluchowski coagulation equation. The new method is based on application of the fast algorithms of linear algebra and the fast arithmetics in tensor train format to acceleration of well-known highly accurate second order Runge-Kutta scheme. After the application of proposed algorithmic optimizations we obtain a dramatical speedup of the classical methodology without loss of the accuracy. We test our solver the problem with source and sink terms and obtain that the TT-ranks of numerical solution do not grow tremendously even with the insert of the physical effects into the basic Smolushowski coagulation model.
引用
收藏
页码:2141 / 2146
页数:6
相关论文
共 50 条
  • [21] SOLVING THE FINITE-DIFFERENCE NONLINEAR POISSON-BOLTZMANN EQUATION
    LUTY, BA
    DAVIS, ME
    MCCAMMON, JA
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1992, 13 (09) : 1114 - 1118
  • [22] A finite-difference contrast source inversion method
    Abubakar, A.
    Hu, W.
    van den Berg, P. M.
    Habashy, T. M.
    INVERSE PROBLEMS, 2008, 24 (06)
  • [23] DEVELOPMENT OF A STABLE AND ACCURATE FINITE-DIFFERENCE SCHEME FOR SOLVING THE ADVECTION-DIFFUSION EQUATION ON AN EXPANDING GRID
    BROWN, PS
    PANDOLFO, JP
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1979, 60 (05) : 609 - 609
  • [24] STABILITY OF A FINITE-DIFFERENCE METHOD FOR SOLVING MATRIX EQUATIONS
    LEECH, JW
    HSU, PT
    MACK, EW
    AIAA JOURNAL, 1965, 3 (11) : 2172 - &
  • [25] FINITE-DIFFERENCE METHOD OF SOLVING ANISOTROPIC SCATTERING PROBLEMS
    BARKSTROM, BR
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1976, 16 (09): : 725 - 739
  • [26] Multigrid Method for Solving Helmholtz Equation with Fourth Order Accurate Compact Finite Difference Method
    Ahmed, B. S.
    Monaquel, S. J.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (05): : 1 - 4
  • [27] A fast finite-difference algorithm for solving space-fractional filtration equation with a generalised Caputo derivative
    V. O. Bohaienko
    Computational and Applied Mathematics, 2019, 38
  • [28] A fast finite-difference algorithm for solving space-fractional filtration equation with a generalised Caputo derivative
    Bohaienko, V. O.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03):
  • [29] Finite-difference contrast source inversion based on hybrid fast conjugate gradient method
    Wang D.
    Wang S.
    Zou S.
    Gao Y.
    Liu H.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2020, 55 (02): : 351 - 359
  • [30] An accurate and efficient multiscale finite-difference frequency-domain method for the scalar Helmholtz equation
    Jiang W.
    Chen X.
    Lv B.
    Jiang S.
    Geophysics, 2021, 87 (01)