On solvability in the small of higher order elliptic equations in grand-Sobolev spaces

被引:20
|
作者
Bilalov, B. T. [1 ]
Sadigova, S. R. [1 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
关键词
Elliptic equation; grand-Sobolev space; solvability in the small; PIECEWISE-LINEAR PHASE; MORREY; SYSTEM; EXPONENTS; THEOREMS; LEBESGUE; BASICITY;
D O I
10.1080/17476933.2020.1807965
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work deals with the mth order elliptic equation with non-smooth coefficients in grand-Sobolev space generated by the norm of the grand-Lebesgue space L-q) (Omega), 1 < q < +infinity. These spaces are non-separable, and therefore, to use classical methods for treating solvability problems in these spaces, you need to modify these methods. To this aim, we consider some subspace, where the infinitely differentiable functions are dense. Then we prove that this subspace is invariant with respect to the singular integral operator and with respect to the multiplication operator by a function from L-infinity. Finally, using classical method of parametrics, we prove the existence in the small of the solution to the considered equation in W-q())m (Omega).
引用
收藏
页码:2117 / 2130
页数:14
相关论文
共 50 条
  • [41] Solvability of strongly nonlinear elliptic variational problems in weighted Orlicz–Sobolev spaces
    Benkirane A.
    El Moumni M.
    Kouhaila K.
    SeMA Journal, 2020, 77 (2) : 119 - 142
  • [42] Sobolev–Dirichlet problem for quasilinear elliptic equations in generalized Orlicz–Sobolev spaces
    Allami Benyaiche
    Ismail Khlifi
    Positivity, 2021, 25 : 819 - 841
  • [43] On Euler Equations in higher order Sobolev spaces (vol 14, pg 93, 2001)
    Moroz, V
    POTENTIAL ANALYSIS, 2001, 15 (04) : 425 - 425
  • [44] ELLIPTIC EQUATIONS OF HIGHER STOCHASTIC ORDER
    Lototsky, Sergey V.
    Rozovskii, Boris L.
    Wan, Xiaoliang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (05): : 1135 - 1153
  • [45] Weighted Sobolev spaces and Morse estimates for quasilinear elliptic equations
    Cingolani, Silvia
    Degiovanni, Marco
    Sciunzi, Berardino
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (08)
  • [46] L∞-bounds for elliptic equations on Orlicz-Sobolev spaces
    Fuchs, M
    Li, GB
    ARCHIV DER MATHEMATIK, 1999, 72 (04) : 293 - 297
  • [47] Elliptic equations with nonzero boundary conditions in weighted Sobolev spaces
    Kim, Doyoon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 1465 - 1479
  • [48] On a class of nonlinear degenerate elliptic equations in weighted Sobolev spaces
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (01) : 81 - 94
  • [49] Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces
    Dong, Hongjie
    Kim, Doyoon
    ADVANCES IN MATHEMATICS, 2015, 274 : 681 - 735
  • [50] On the range of elliptic, second order, nonvariational operators in sobolev spaces (*)
    Manselli P.
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 67 - 80