Fatigue life sensitivity of monopile-supported offshore wind turbines to damping

被引:73
|
作者
Rezaei, Ramtin [1 ]
Fromme, Paul [2 ]
Duffour, Philippe [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WCIE 6BT, England
[2] UCL, Dept Mech Engn, London WCIE 6BT, England
关键词
Offshore wind turbine; Fatigue life calculation; Vibration analysis; Renewable energy; SURFACE-LAYER TURBULENCE; DYNAMIC-RESPONSE; FOUNDATION;
D O I
10.1016/j.renene.2018.02.086
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Offshore wind energy is an important renewable electricity source in the UK and Europe. Monopiles are currently the most commonly used substructures to support offshore wind turbines. The fatigue life of offshore wind turbines is directly linked to the oscillatory bending stresses caused by wind and wave loading. The dynamic response of the structure is highly dependent on the combined aerodynamic, hydrodynamic, structural, and soil damping present. The fatigue life sensitivity of a reference 5 MW wind turbine under operational and non-operational conditions has been investigated using time-domain finite element simulations. The model uses beam elements for the monopile and tower and includes nonlinear p-y curves for soil-structure interaction. The effects of the wind turbine operation, environmental loads, and variable damping levels on the fatigue life were investigated systematically. The fatigue life increases significantly as a result of reductions in the bending stress caused by increased damping. From a practical point of view, significant cost-savings could be achieved in the design of a wind turbine by fitting supplemental damping devices. An efficient approximate method is proposed to assess the influence of damping, by scaling the vibration amplitudes around the first natural frequency of the system. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:450 / 459
页数:10
相关论文
共 50 条
  • [41] Long-term loads for a monopile-supported offshore wind turbine
    Rendon, Erica A.
    Manuel, Lance
    WIND ENERGY, 2014, 17 (02) : 209 - 223
  • [42] Vibration reduction of monopile-supported offshore wind turbines based on finite element structural analysis and active control
    Alkhoury, Philip
    Ait-Ahmed, Mourad
    Soubra, Abdul-Hamid
    Rey, Valentine
    OCEAN ENGINEERING, 2022, 263
  • [43] Assessment of Practical Methods to Predict Accumulated Rotations of Monopile-Supported Offshore Wind Turbines in Cohesionless Ground Profiles
    Jalbi, Saleh
    Hilton, Joseph
    Jacques, Luke
    ENERGIES, 2020, 13 (15)
  • [44] Shaking table tests and numerical analysis of monopile-supported offshore wind turbines under combined wind, wave and seismic loads
    Xu, Ying
    Shen, Tao
    Zuo, Junfan
    Bhattacharya, Subhamoy
    Han, Qinghua
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2024, 183
  • [45] Applying new high damping viscoelastic dampers to mitigate the structural vibrations of monopile-supported offshore wind turbine
    Liang, Chen
    Yuan, Yong
    Yu, Xiaotao
    OCEAN ENGINEERING, 2024, 295
  • [46] A semi-analytical approach for dynamic responses of monopile-supported offshore wind turbines subjected to accidental loads
    Hammad, Ahmed
    Yu, Zhaolong
    APPLIED OCEAN RESEARCH, 2024, 153
  • [47] Integrated seismic response of monopile supported offshore wind turbines
    Xi R.-Q.
    Du X.-L.
    Wang P.-G.
    Xu C.-S.
    Xu K.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (04): : 757 - 766
  • [48] Global field performance of monopile-supported offshore wind turbines with sinusoidal layouts using innovative combined grating conditions
    Ge, Hongli
    Liang, Bingchen
    Zhang, Libang
    Wang, Zhenlu
    Li, Zihan
    PHYSICS OF FLUIDS, 2022, 34 (09)
  • [49] Coupled effects of long-term cyclic loading and scour on the mechanical responses of monopile-supported offshore wind turbines
    Zhang, Hao
    Zheng, Hanbo
    Wang, Chen
    Liang, Fayun
    OCEAN ENGINEERING, 2022, 265
  • [50] Fatigue design sensitivities of large monopile offshore wind turbines
    Sorum, Stian H.
    Katsikogiannis, George
    Amdahl, Jorgen
    Page, Ana M.
    Klinkvort, Rasmus T.
    WIND ENERGY, 2022, 25 (10) : 1684 - 1709